evanarlian's picture
update model card README.md
2d5667c
|
raw
history blame
3.44 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - evanarlian/common_voice_11_0_id_filtered
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-113m-id
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: evanarlian/common_voice_11_0_id_filtered
          type: evanarlian/common_voice_11_0_id_filtered
        metrics:
          - name: Wer
            type: wer
            value: 0.39516649755557604

wav2vec2-xls-r-113m-id

This model is a fine-tuned version of evanarlian/distil-wav2vec2-xls-r-113m-id on the evanarlian/common_voice_11_0_id_filtered dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3280
  • Wer: 0.3952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 25.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.2512 0.92 1000 2.9098 1.0000
2.163 1.84 2000 1.4810 0.9941
1.2472 2.75 3000 0.9604 0.9196
1.0166 3.67 4000 0.8240 0.8498
0.8765 4.59 5000 0.6873 0.7741
0.7712 5.51 6000 0.6083 0.7111
0.6892 6.43 7000 0.5546 0.6592
0.6314 7.35 8000 0.5022 0.6108
0.5779 8.26 9000 0.4850 0.5825
0.5245 9.18 10000 0.4665 0.5538
0.4858 10.1 11000 0.4282 0.5279
0.4616 11.02 12000 0.4053 0.5082
0.421 11.94 13000 0.3809 0.4935
0.4064 12.86 14000 0.3706 0.4781
0.3758 13.77 15000 0.3743 0.4672
0.3598 14.69 16000 0.3571 0.4521
0.3441 15.61 17000 0.3455 0.4368
0.3279 16.53 18000 0.3398 0.4386
0.3086 17.45 19000 0.3512 0.4284
0.3013 18.37 20000 0.3321 0.4233
0.2963 19.28 21000 0.3391 0.4178
0.2831 20.2 22000 0.3438 0.4114
0.2801 21.12 23000 0.3336 0.4056
0.2623 22.04 24000 0.3317 0.4012
0.263 22.96 25000 0.3280 0.4005
0.2529 23.88 26000 0.3268 0.3951
0.2492 24.79 27000 0.3280 0.3952

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.7.1
  • Tokenizers 0.13.1