metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: modernbert-base-conll2012_ontonotesv5-english_v4-ner
results: []
modernbert-base-conll2012_ontonotesv5-english_v4-ner
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0694
- Precision: 0.8638
- Recall: 0.8710
- F1: 0.8674
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
0.0677 | 1.0 | 2350 | 0.0776 | 0.8250 | 0.8429 | 0.8339 |
0.0349 | 2.0 | 4700 | 0.0698 | 0.8397 | 0.8608 | 0.8501 |
0.0181 | 3.0 | 7050 | 0.0790 | 0.8466 | 0.8601 | 0.8533 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.0+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0