metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: modernbert-base-conll2012_ontonotesv5-english_v4-ner
results: []
modernbert-base-conll2012_ontonotesv5-english_v4-ner
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0756
- Precision: 0.8463
- Recall: 0.8628
- F1: 0.8545
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
0.0683 | 1.0 | 2350 | 0.0765 | 0.8224 | 0.8438 | 0.8329 |
0.0353 | 2.0 | 4700 | 0.0692 | 0.8427 | 0.8651 | 0.8537 |
0.0189 | 3.0 | 7050 | 0.0756 | 0.8463 | 0.8628 | 0.8545 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.0+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0