metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: modernbert-base-conll2012_ontonotesv5-english_v4-ner
results: []
modernbert-base-conll2012_ontonotesv5-english_v4-ner
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0679
- Precision: 0.8636
- Recall: 0.8704
- F1: 0.8670
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
0.0698 | 1.0 | 2350 | 0.0795 | 0.8121 | 0.8344 | 0.8231 |
0.0356 | 2.0 | 4700 | 0.0707 | 0.8438 | 0.8575 | 0.8506 |
0.0184 | 3.0 | 7050 | 0.0795 | 0.8461 | 0.8567 | 0.8513 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.0+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0