|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: t5-small-finetuned-pubmed |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-pubmed |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6131 |
|
- Rouge2 Precision: 0.3 |
|
- Rouge2 Recall: 0.2152 |
|
- Rouge2 Fmeasure: 0.2379 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| 2.1335 | 1.0 | 563 | 1.7632 | 0.2716 | 0.1936 | 0.2135 | |
|
| 1.9373 | 2.0 | 1126 | 1.7037 | 0.2839 | 0.2068 | 0.2265 | |
|
| 1.8827 | 3.0 | 1689 | 1.6723 | 0.2901 | 0.2118 | 0.2316 | |
|
| 1.8257 | 4.0 | 2252 | 1.6503 | 0.2938 | 0.2115 | 0.2332 | |
|
| 1.8152 | 5.0 | 2815 | 1.6386 | 0.2962 | 0.2139 | 0.2357 | |
|
| 1.7939 | 6.0 | 3378 | 1.6284 | 0.2976 | 0.212 | 0.2354 | |
|
| 1.7845 | 7.0 | 3941 | 1.6211 | 0.2991 | 0.2155 | 0.2383 | |
|
| 1.7468 | 8.0 | 4504 | 1.6167 | 0.2994 | 0.217 | 0.239 | |
|
| 1.7464 | 9.0 | 5067 | 1.6137 | 0.3007 | 0.2154 | 0.2382 | |
|
| 1.744 | 10.0 | 5630 | 1.6131 | 0.3 | 0.2152 | 0.2379 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.3 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 1.15.1 |
|
- Tokenizers 0.10.3 |
|
|