gegenius's picture
gegenius/distilbert-base-uncased-lora-text-classification
16d63b6 verified
metadata
base_model: distilbert-base-uncased
library_name: peft
license: apache-2.0
metrics:
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0415
  • Accuracy: {'accuracy': 0.9}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4205 {'accuracy': 0.875}
0.4414 2.0 500 0.4863 {'accuracy': 0.868}
0.4414 3.0 750 0.5868 {'accuracy': 0.893}
0.1924 4.0 1000 0.6808 {'accuracy': 0.894}
0.1924 5.0 1250 0.7949 {'accuracy': 0.901}
0.0713 6.0 1500 0.8349 {'accuracy': 0.888}
0.0713 7.0 1750 0.9662 {'accuracy': 0.893}
0.0223 8.0 2000 0.9994 {'accuracy': 0.896}
0.0223 9.0 2250 1.0344 {'accuracy': 0.9}
0.008 10.0 2500 1.0415 {'accuracy': 0.9}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1