|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: google/bert_uncased_L-4_H-256_A-4 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: bert_uncased_L-4_H-256_A-4_qqp |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE QQP |
|
type: glue |
|
args: qqp |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8774672273064557 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8326577489528443 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_uncased_L-4_H-256_A-4_qqp |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE QQP dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2840 |
|
- Accuracy: 0.8775 |
|
- F1: 0.8327 |
|
- Combined Score: 0.8551 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.3985 | 1.0 | 1422 | 0.3341 | 0.8486 | 0.7966 | 0.8226 | |
|
| 0.3199 | 2.0 | 2844 | 0.3058 | 0.8636 | 0.8245 | 0.8440 | |
|
| 0.2819 | 3.0 | 4266 | 0.2883 | 0.8732 | 0.8341 | 0.8536 | |
|
| 0.2525 | 4.0 | 5688 | 0.2840 | 0.8775 | 0.8327 | 0.8551 | |
|
| 0.2304 | 5.0 | 7110 | 0.2858 | 0.8808 | 0.8448 | 0.8628 | |
|
| 0.2094 | 6.0 | 8532 | 0.2877 | 0.8817 | 0.8450 | 0.8633 | |
|
| 0.1912 | 7.0 | 9954 | 0.2909 | 0.8823 | 0.8462 | 0.8642 | |
|
| 0.1749 | 8.0 | 11376 | 0.2944 | 0.8856 | 0.8512 | 0.8684 | |
|
| 0.1604 | 9.0 | 12798 | 0.3125 | 0.8863 | 0.8526 | 0.8694 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|