metadata
library_name: peft
base_model: ybelkada/falcon-7b-sharded-bf16
tags:
- trl
- sft
- generated_from_trainer
- falcon
- mental health
- chatbot
model-index:
- name: falcon-7b-sharded-bf16-finetuned-mental-health-conv
results: []
license: mit
datasets:
- heliosbrahma/mental_health_chatbot_dataset
language:
- en
pipeline_tag: question-answering
falcon-7b-sharded-bf16-finetuned-mental-health-conv
This model is a fine-tuned version of ybelkada/falcon-7b-sharded-bf16 on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- _load_in_8bit: False
- _load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
- bnb_4bit_quant_storage: uint8
- load_in_4bit: True
- load_in_8bit: False
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 100
Training results
Framework versions
- PEFT 0.5.0
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.16.0
- Tokenizers 0.19.1