|
--- |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-base-azsci-topics |
|
results: [] |
|
datasets: |
|
- hajili/azsci_topics |
|
language: |
|
- az |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-azsci-topics |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on [azsci_topics](https://huggingface.co/datasets/hajili/azsci_topics) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5075 |
|
- Precision: 0.8624 |
|
- Recall: 0.8707 |
|
- F1: 0.8645 |
|
- Accuracy: 0.8707 |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 288 | 0.8674 | 0.6762 | 0.7422 | 0.6848 | 0.7422 | |
|
| 1.3706 | 2.0 | 576 | 0.6110 | 0.8177 | 0.8264 | 0.8104 | 0.8264 | |
|
| 1.3706 | 3.0 | 864 | 0.5391 | 0.8407 | 0.8490 | 0.8415 | 0.8490 | |
|
| 0.5184 | 4.0 | 1152 | 0.5059 | 0.8505 | 0.8559 | 0.8493 | 0.8559 | |
|
| 0.5184 | 5.0 | 1440 | 0.5075 | 0.8624 | 0.8707 | 0.8645 | 0.8707 | |
|
|
|
### Evaluation results |
|
|
|
| Topic | Precision | Recall | F1 | Support | |
|
|:-------------------|------------:|---------:|---------:|----------:| |
|
| Aqrar elmlər | 0.703704 | 0.703704 | 0.703704 | 27 | |
|
| Astronomiya | 0 | 0 | 0 | 2 | |
|
| Biologiya elmləri | 0.886598 | 0.819048 | 0.851485 | 105 | |
|
| Coğrafiya | 0.75 | 0.705882 | 0.727273 | 17 | |
|
| Filologiya elmləri | 0.91954 | 0.914286 | 0.916905 | 175 | |
|
| Fizika | 0.710526 | 0.794118 | 0.75 | 34 | |
|
| Fəlsəfə | 0.7 | 0.5 | 0.583333 | 14 | |
|
| Hüquq elmləri | 1 | 1 | 1 | 29 | |
|
| Kimya | 0.75 | 0.934426 | 0.832117 | 61 | |
|
| Memarlıq | 1 | 0.4 | 0.571429 | 5 | |
|
| Mexanika | 0 | 0 | 0 | 4 | |
|
| Pedaqogika | 0.854545 | 1 | 0.921569 | 47 | |
|
| Psixologiya | 0.823529 | 0.777778 | 0.8 | 18 | |
|
| Riyaziyyat | 0.891892 | 0.846154 | 0.868421 | 39 | |
|
| Siyasi elmlər | 0.785714 | 0.88 | 0.830189 | 25 | |
|
| Sosiologiya | 0 | 0 | 0 | 4 | |
|
| Sənətşünaslıq | 0.843137 | 0.914894 | 0.877551 | 47 | |
|
| Tarix | 0.857143 | 0.846154 | 0.851613 | 78 | |
|
| Texnika elmləri | 0.803922 | 0.788462 | 0.796117 | 104 | |
|
| Tibb elmləri | 0.929936 | 0.986486 | 0.957377 | 148 | |
|
| Yer elmləri | 0.692308 | 0.692308 | 0.692308 | 13 | |
|
| İqtisad elmləri | 0.972603 | 0.934211 | 0.95302 | 152 | |
|
| Əczaçılıq elmləri | 0 | 0 | 0 | 4 | |
|
| macro avg | 0.690222 | 0.671213 | 0.673235 | 1152 | |
|
| weighted avg | 0.862363 | 0.87066 | 0.864467 | 1152 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |