Text Generation
Transformers
Safetensors
llama
conversational
text-generation-inference
Inference Endpoints

X-ALMA builds upon ALMA-R by expanding support from 6 to 50 languages. It utilizes a plug-and-play architecture with language-specific modules, complemented by a carefully designed training recipe. This release includes the X-ALMA pre-trained base model.

@misc{xu2024xalmaplugplay,
      title={X-ALMA: Plug & Play Modules and Adaptive Rejection for Quality Translation at Scale}, 
      author={Haoran Xu and Kenton Murray and Philipp Koehn and Hieu Hoang and Akiko Eriguchi and Huda Khayrallah},
      year={2024},
      eprint={2410.03115},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2410.03115}, 
}

X-ALMA-13B-Pretrain is pre-trained on 50 languages: en,da,nl,de,is,no,sv,af,ca,ro,gl,it,pt,es,bg,mk,sr,uk,ru,id,ms,th,vi,mg,fr,hu,el,cs,pl,lt,lv,ka,zh,ja,ko,fi,et,gu,hi,mr,ne,ur,az,kk,ky,tr,uz,ar,he,fa.

All X-ALMA checkpoints are released at huggingface:

Models Model Link Description
X-ALMA haoranxu/X-ALMA) X-ALMA model with all its modules
X-ALMA-13B-Pretrain haoranxu/X-ALMA-13B-Pretrain X-ALMA 13B multilingual pre-trained base model
X-ALMA-Group1 haoranxu/X-ALMA-13B-Group1 X-ALMA group1 specific module and the merged model
X-ALMA-Group2 haoranxu/X-ALMA-13B-Group2 X-ALMA group2 specific module and the merged model
X-ALMA-Group3 haoranxu/X-ALMA-13B-Group3 X-ALMA group3 specific module and the merged model
X-ALMA-Group4 haoranxu/X-ALMA-13B-Group4 X-ALMA group4 specific module and the merged model
X-ALMA-Group5 haoranxu/X-ALMA-13B-Group5 X-ALMA group5 specific module and the merged model
X-ALMA-Group6 haoranxu/X-ALMA-13B-Group6 X-ALMA group6 specific module and the merged model
X-ALMA-Group7 haoranxu/X-ALMA-13B-Group7 X-ALMA group7 specific module and the merged model
X-ALMA-Group8 haoranxu/X-ALMA-13B-Group8 X-ALMA group8 specific module and the merged model

A quick start:

There are three ways to load X-ALMA for translation. An example of translating "ζˆ‘ηˆ±ζœΊε™¨ηΏ»θ―‘γ€‚" into English (X-ALMA should also able to do multilingual open-ended QA).

The first way: loading the merged model where the language-specific module has been merged into the base model (Recommended):

import torch
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
from peft import PeftModel

GROUP2LANG = {
1: ["da", "nl", "de", "is", "no", "sv", "af"],
2: ["ca", "ro", "gl", "it", "pt", "es"],
3: ["bg", "mk", "sr", "uk", "ru"],
4: ["id", "ms", "th", "vi", "mg", "fr"],
5: ["hu", "el", "cs", "pl", "lt", "lv"],
6: ["ka", "zh", "ja", "ko", "fi", "et"],
7: ["gu", "hi", "mr", "ne", "ur"],
8: ["az", "kk", "ky", "tr", "uz", "ar", "he", "fa"],
}
LANG2GROUP = {lang: str(group) for group, langs in GROUP2LANG.items() for lang in langs}
group_id = LANG2GROUP["zh"]

model = AutoModelForCausalLM.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", padding_side='left')

# Add the source sentence into the prompt template
prompt="Translate this from Chinese to English:\nChinese: ζˆ‘ηˆ±ζœΊε™¨ηΏ»θ―‘γ€‚\nEnglish:"

# X-ALMA needs chat template but ALMA and ALMA-R don't need it.
chat_style_prompt = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(chat_style_prompt, tokenize=False, add_generation_prompt=True)

input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda()

# Translation
with torch.no_grad():
generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(outputs)

The second way: loading the base model and language-specific module (Recommended):

model = AutoModelForCausalLM.from_pretrained("haoranxu/X-ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto")
model = PeftModel.from_pretrained(model, f"haoranxu/X-ALMA-13B-Group{group_id}")
tokenizer = AutoTokenizer.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", padding_side='left')

The third way: loading the base model with all language-specific modules like MoE: (Require large GPU memory)

from modeling_xalma import XALMAForCausalLM
model = XALMAForCausalLM.from_pretrained("haoranxu/X-ALMA", torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("haoranxu/X-ALMA", padding_side='left')

# Add `lang="zh"`: specify the language to instruct the model on which group to use for the third loading method during generation.
generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9, lang="zh")
Downloads last month
13,194
Safetensors
Model size
13B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for haoranxu/X-ALMA-13B-Pretrain

Finetuned
(1)
this model
Finetunes
9 models
Quantizations
4 models

Datasets used to train haoranxu/X-ALMA-13B-Pretrain

Spaces using haoranxu/X-ALMA-13B-Pretrain 3

Collection including haoranxu/X-ALMA-13B-Pretrain