happyme531's picture
Update README.md
da85c18 verified
|
raw
history blame
2.85 kB
---
license: agpl-3.0
base_model: SmilingWolf/wd-convnext-tagger-v3
tags:
- rknn
---
# WD ConvNext Tagger v3 RKNN2
## (English README see below)
在RK3588上运行WaifuDiffusion图像标签模型!
- 推理速度(RK3588):
- 单NPU核: 320ms
- 内存占用(RK3588):
- 0.45GB
## 使用方法
1. 克隆或者下载此仓库到本地
2. 安装依赖
```bash
pip install numpy<2 pandas opencv-python rknn-toolkit-lite2
```
3. 运行
```bash
python run_rknn.py input.jpg
```
输出结果示例:
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6319d0860d7478ae0069cd92/FUx2XdHnAuxIPr464B-_l.jpeg)
```log
tag_id name probs
0 9999999 general 0.521484
5 212816 solo 0.929199
12 15080 short_hair 0.520508
25 540830 1boy 0.947754
40 16613 jewelry 0.577148
72 1300281 male_focus 0.907227
130 10926 pants 0.803223
346 1094664 colored_skin 0.570312
373 4009 turtleneck 0.552246
1532 1314823 black_sweater 0.514160
```
## 模型转换
1. 安装依赖
```bash
pip install numpy<2 onnxruntime rknn-toolkit2
```
2. 下载原始onnx模型
3. 转换onnx模型到rknn模型:
```bash
python convert_rknn.py
```
## 已知问题
- int8量化后精度损失极大, 基本不可用. 不建议使用量化推理.
## 参考
- [SmilingWolf/wd-convnext-tagger-v3](https://huggingface.co/SmilingWolf/wd-convnext-tagger-v3)
## English README
Run WaifuDiffusion image tagging model on RK3588!
- Inference Speed (RK3588):
- Single NPU Core: 320ms
- Memory Usage (RK3588):
- 0.45GB
## Usage
1. Clone or download this repository
2. Install dependencies
```bash
pip install numpy<2 pandas opencv-python rknn-toolkit-lite2
```
3. Run
```bash
python run_rknn.py input.jpg
```
Output example:
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6319d0860d7478ae0069cd92/FUx2XdHnAuxIPr464B-_l.jpeg)
```log
tag_id name probs
0 9999999 general 0.521484
5 212816 solo 0.929199
12 15080 short_hair 0.520508
25 540830 1boy 0.947754
40 16613 jewelry 0.577148
72 1300281 male_focus 0.907227
130 10926 pants 0.803223
346 1094664 colored_skin 0.570312
373 4009 turtleneck 0.552246
1532 1314823 black_sweater 0.514160
```
## Model Conversion
1. Install dependencies
```bash
pip install numpy<2 onnxruntime rknn-toolkit2
```
2. Download original onnx model
3. Convert onnx model to rknn model:
```bash
python convert_rknn.py
```
## Known Issues
- Huge precision loss after int8 quantization, not recommended to use quantized inference.
## References
- [SmilingWolf/wd-convnext-tagger-v3](https://huggingface.co/SmilingWolf/wd-convnext-tagger-v3)