|
--- |
|
license: agpl-3.0 |
|
base_model: SmilingWolf/wd-convnext-tagger-v3 |
|
tags: |
|
- rknn |
|
--- |
|
|
|
# WD ConvNext Tagger v3 RKNN2 |
|
|
|
## (English README see below) |
|
|
|
在RK3588上运行WaifuDiffusion图像标签模型! |
|
|
|
- 推理速度(RK3588): |
|
- 单NPU核: 320ms |
|
|
|
- 内存占用(RK3588): |
|
- 0.45GB |
|
|
|
## 使用方法 |
|
|
|
1. 克隆或者下载此仓库到本地 |
|
|
|
2. 安装依赖 |
|
|
|
```bash |
|
pip install numpy<2 pandas opencv-python rknn-toolkit-lite2 |
|
``` |
|
|
|
3. 运行 |
|
|
|
```bash |
|
python run_rknn.py input.jpg |
|
``` |
|
|
|
输出结果示例: |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6319d0860d7478ae0069cd92/FUx2XdHnAuxIPr464B-_l.jpeg) |
|
|
|
```log |
|
tag_id name probs |
|
0 9999999 general 0.521484 |
|
5 212816 solo 0.929199 |
|
12 15080 short_hair 0.520508 |
|
25 540830 1boy 0.947754 |
|
40 16613 jewelry 0.577148 |
|
72 1300281 male_focus 0.907227 |
|
130 10926 pants 0.803223 |
|
346 1094664 colored_skin 0.570312 |
|
373 4009 turtleneck 0.552246 |
|
1532 1314823 black_sweater 0.514160 |
|
``` |
|
|
|
## 模型转换 |
|
|
|
1. 安装依赖 |
|
|
|
```bash |
|
pip install numpy<2 onnxruntime rknn-toolkit2 |
|
``` |
|
|
|
2. 下载原始onnx模型 |
|
|
|
3. 转换onnx模型到rknn模型: |
|
|
|
```bash |
|
python convert_rknn.py |
|
``` |
|
|
|
## 已知问题 |
|
|
|
- int8量化后精度损失极大, 基本不可用. 不建议使用量化推理. |
|
|
|
## 参考 |
|
|
|
- [SmilingWolf/wd-convnext-tagger-v3](https://huggingface.co/SmilingWolf/wd-convnext-tagger-v3) |
|
|
|
## English README |
|
|
|
Run WaifuDiffusion image tagging model on RK3588! |
|
|
|
- Inference Speed (RK3588): |
|
- Single NPU Core: 320ms |
|
|
|
- Memory Usage (RK3588): |
|
- 0.45GB |
|
|
|
## Usage |
|
|
|
1. Clone or download this repository |
|
|
|
2. Install dependencies |
|
|
|
```bash |
|
pip install numpy<2 pandas opencv-python rknn-toolkit-lite2 |
|
``` |
|
|
|
3. Run |
|
|
|
```bash |
|
python run_rknn.py input.jpg |
|
``` |
|
|
|
Output example: |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6319d0860d7478ae0069cd92/FUx2XdHnAuxIPr464B-_l.jpeg) |
|
|
|
```log |
|
tag_id name probs |
|
0 9999999 general 0.521484 |
|
5 212816 solo 0.929199 |
|
12 15080 short_hair 0.520508 |
|
25 540830 1boy 0.947754 |
|
40 16613 jewelry 0.577148 |
|
72 1300281 male_focus 0.907227 |
|
130 10926 pants 0.803223 |
|
346 1094664 colored_skin 0.570312 |
|
373 4009 turtleneck 0.552246 |
|
1532 1314823 black_sweater 0.514160 |
|
``` |
|
|
|
|
|
## Model Conversion |
|
|
|
1. Install dependencies |
|
|
|
```bash |
|
pip install numpy<2 onnxruntime rknn-toolkit2 |
|
``` |
|
|
|
2. Download original onnx model |
|
|
|
3. Convert onnx model to rknn model: |
|
|
|
```bash |
|
python convert_rknn.py |
|
``` |
|
|
|
## Known Issues |
|
|
|
- Huge precision loss after int8 quantization, not recommended to use quantized inference. |
|
|
|
## References |
|
|
|
- [SmilingWolf/wd-convnext-tagger-v3](https://huggingface.co/SmilingWolf/wd-convnext-tagger-v3) |
|
|