metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- hojzas/proj4-label
metrics:
- accuracy
widget:
- text: |2-
perms = all_permutations_substrings(string)
return perms.intersection(words)
- text: |2-
perms = all_permutations_substrings(string)
return {i for i in words if i in perms}
- text: >2-
perms = all_permutations_substrings(string)
return {word for word in words if hash(word) in {hash(looking) for looking
in perms}}
- text: |2-
perms = all_permutations_substrings(string)
res = [x for x in list(perms) + words if x in list(perms) and x in words]
return set(res)
- text: |2-
perms = all_permutations_substrings(string)
if set(words) & set(perms):
res = (set(words) & set(perms))
pipeline_tag: text-classification
inference: true
co2_eq_emissions:
emissions: 0.30176603615895614
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
ram_total_size: 251.49160385131836
hours_used: 0.006
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/all-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: hojzas/proj4-label
type: hojzas/proj4-label
split: test
metrics:
- type: accuracy
value: 0.9375
name: Accuracy
SetFit with sentence-transformers/all-mpnet-base-v2
This is a SetFit model trained on the hojzas/proj4-label dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 2 classes
- Training Dataset: hojzas/proj4-label
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9375 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("hojzas/setfit-proj4-label")
# Run inference
preds = model(" perms = all_permutations_substrings(string)
return perms.intersection(words)")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 12 | 29.1633 | 140 |
Label | Training Sample Count |
---|---|
0 | 35 |
1 | 14 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0081 | 1 | 0.3668 | - |
0.4065 | 50 | 0.0048 | - |
0.8130 | 100 | 0.0014 | - |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Carbon Emitted: 0.000 kg of CO2
- Hours Used: 0.006 hours
Training Hardware
- On Cloud: No
- GPU Model: No GPU used
- CPU Model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
- RAM Size: 251.49 GB
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.36.1
- PyTorch: 2.1.2+cu121
- Datasets: 2.14.7
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}