|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
- summarization |
|
datasets: |
|
- null |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 10.8752 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.1491 |
|
- Rouge1: 10.8752 |
|
- Rouge2: 3.8695 |
|
- Rougel: 10.6991 |
|
- Rougelsum: 10.6616 |
|
- Gen Len: 5.6085 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 9.1733 | 1.0 | 2202 | 3.4863 | 6.3629 | 1.4637 | 6.2501 | 6.2752 | 3.3302 | |
|
| 4.4547 | 2.0 | 4404 | 3.2809 | 9.1283 | 2.992 | 8.9851 | 9.0487 | 4.7642 | |
|
| 4.0581 | 3.0 | 6606 | 3.2108 | 10.5207 | 3.7411 | 10.2595 | 10.234 | 5.3208 | |
|
| 3.8821 | 4.0 | 8808 | 3.1701 | 10.8636 | 4.0944 | 10.6462 | 10.6468 | 5.2453 | |
|
| 3.7857 | 5.0 | 11010 | 3.1600 | 10.9456 | 4.5187 | 10.784 | 10.7542 | 5.691 | |
|
| 3.7273 | 6.0 | 13212 | 3.1491 | 10.8752 | 3.8695 | 10.6991 | 10.6616 | 5.6085 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.10.3 |
|
- Pytorch 1.9.1+cu102 |
|
- Datasets 1.12.1 |
|
- Tokenizers 0.10.3 |
|
|