|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- ja |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** ikedachin |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
|
|
## 学習データ |
|
使用したSupervised fien-tune用dataset:下記からランダムに20000データを抽出 |
|
DeL-TaiseiOzaki/Tengentoppa-sft-v1.0 |
|
🌾 ランダムに20000データを取り出して学習 |
|
|
|
# ベースモデル |
|
SFTに用いた継続事前学習モデル(ベースとしたモデル) |
|
ikedachin/llm-jp-3-13b-october-news-e1-all-3-5 |
|
このベースモデルのLoRAパラメータの一部を追加学習 |
|
|
|
## 追加学習前のベースモデル |
|
llm-jp/llm-jp-3-13b |
|
|
|
### 実行コード |
|
|
|
```:Python |
|
# import libraries |
|
import re |
|
import json |
|
|
|
import torch |
|
|
|
from peft import PeftModel |
|
from tqdm import tqdm |
|
from unsloth import FastLanguageModel |
|
|
|
# define base model_id and peft model_id |
|
model_id = "llm-jp/llm-jp-3-13b" |
|
adapter_id = "ikedachin/llm-jp-3-13b-october-news-e1-all-3-5-sft-Ozaki-Magpie-20000-sorted-params" |
|
|
|
dtype = None |
|
load_in_4bit |
|
|
|
# down load base model |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_id, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
) |
|
|
|
# adapt peft model |
|
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) |
|
|
|
|
|
# prepare dataset elyza-tasks-100-TV_0.jsonl |
|
datasets_elyza = [] |
|
|
|
with open('./elyza-tasks-100-TV_0.jsonl', 'r') as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets_elyza.append(json.loads(item)) |
|
item = "" |
|
|
|
|
|
# change mode for inference |
|
FastLanguageModel.for_inference(model) |
|
|
|
# inferrence |
|
results = [] |
|
|
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
# create result file as jsonl type |
|
json_file_id = re.sub(".*/", adapter_id) |
|
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
|
|
|
|
``` |