|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
language: |
|
- he |
|
library_name: sentence-transformers |
|
--- |
|
|
|
|
|
# imvladikon/sentence-transformers-alephbert[WIP] |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
Current version is distillation of the [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) model on private corpus. |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.util import cos_sim |
|
|
|
sentences = [ |
|
"讛诐 讛讬讜 砖诪讞讬诐 诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐.", |
|
"诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐 讛讬讛 诪讗讜讚 诪砖诪讞 诇讛诐." |
|
] |
|
|
|
model = SentenceTransformer('imvladikon/sentence-transformers-alephbert') |
|
embeddings = model.encode(sentences) |
|
|
|
|
|
print(cos_sim(*tuple(embeddings)).item()) |
|
# 0.883316159248352 |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
import torch |
|
from torch import nn |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = [ |
|
"讛诐 讛讬讜 砖诪讞讬诐 诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐.", |
|
"诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐 讛讬讛 诪讗讜讚 诪砖诪讞 诇讛诐." |
|
] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('imvladikon/sentence-transformers-alephbert') |
|
model = AutoModel.from_pretrained('imvladikon/sentence-transformers-alephbert') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
cos_sim = nn.CosineSimilarity(dim=0, eps=1e-6) |
|
print(cos_sim(sentence_embeddings[0], sentence_embeddings[1]).item()) |
|
``` |
|
|
|
``` |
|
def ppl_naive(text, model, tokenizer): |
|
input = tokenizer.encode(text, return_tensors="pt") |
|
loss = model(input, labels=input)[0] |
|
return torch.exp(loss).item() |
|
|
|
text = """{} 讛讬讗 注讬专 讛讘讬专讛 砖诇 诪讚讬谞转 讬砖专讗诇, 讜讛注讬专 讛讙讚讜诇讛 讘讬讜转专 讘讬砖专讗诇 讘讙讜讚诇 讛讗讜讻诇讜住讬讬讛""" |
|
|
|
for word in ["讞讬驻讛", "讬专讜砖诇讬诐", "转诇 讗讘讬讘"]: |
|
print(ppl_naive(text.format(word), model, tokenizer)) |
|
|
|
# 10.181422233581543 |
|
# 9.743313789367676 |
|
# 10.171016693115234 |
|
``` |
|
|
|
|
|
## Evaluation Results |
|
|
|
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) |
|
|
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 44999 with parameters: |
|
``` |
|
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
``` |
|
{'scale': 20.0, 'similarity_fct': 'cos_sim'} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 10, |
|
"evaluation_steps": 0, |
|
"evaluator": "NoneType", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 44999, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
```bibtex |
|
@misc{seker2021alephberta, |
|
title={AlephBERT:A Hebrew Large Pre-Trained Language Model to Start-off your Hebrew NLP Application With}, |
|
author={Amit Seker and Elron Bandel and Dan Bareket and Idan Brusilovsky and Refael Shaked Greenfeld and Reut Tsarfaty}, |
|
year={2021}, |
|
eprint={2104.04052}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
```bibtex |
|
@misc{reimers2019sentencebert, |
|
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks}, |
|
author={Nils Reimers and Iryna Gurevych}, |
|
year={2019}, |
|
eprint={1908.10084}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|