finetuned-fake-food / README.md
itsLeen's picture
Model save
e6c99c5 verified
|
raw
history blame
2.68 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: finetuned-fake-food
    results: []

finetuned-fake-food

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3455
  • Accuracy: 0.8541

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5416 0.1264 100 0.5593 0.7081
0.5299 0.2528 200 0.5342 0.7422
0.5503 0.3793 300 0.4875 0.7717
0.5561 0.5057 400 0.4622 0.7941
0.5581 0.6321 500 0.5501 0.7457
0.5845 0.7585 600 0.5088 0.7475
0.5695 0.8850 700 0.4740 0.7860
0.5406 1.0114 800 0.4856 0.7816
0.5353 1.1378 900 0.4252 0.8156
0.5345 1.2642 1000 0.5014 0.7762
0.5105 1.3906 1100 0.4800 0.7860
0.5266 1.5171 1200 0.4618 0.7959
0.4709 1.6435 1300 0.3906 0.8281
0.4624 1.7699 1400 0.4208 0.8129
0.4677 1.8963 1500 0.4207 0.8174
0.4478 2.0228 1600 0.3557 0.8478
0.4451 2.1492 1700 0.3546 0.8442
0.3796 2.2756 1800 0.3199 0.8720
0.4358 2.4020 1900 0.3308 0.8603
0.3373 2.5284 2000 0.3455 0.8541

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1