|
--- |
|
license: mit |
|
base_model: deepset/gbert-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- universal_dependencies |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: gbert-large-upos |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: universal_dependencies |
|
type: universal_dependencies |
|
config: de_gsd |
|
split: validation |
|
args: de_gsd |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.825291976991079 |
|
- name: Recall |
|
type: recall |
|
value: 0.7826990832215603 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7912197452035137 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9413806706114398 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gbert-large-upos |
|
|
|
This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on the universal_dependencies dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1996 |
|
- Precision: 0.8253 |
|
- Recall: 0.7827 |
|
- F1: 0.7912 |
|
- Accuracy: 0.9414 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 438 | 0.3197 | 0.8098 | 0.7291 | 0.7486 | 0.8936 | |
|
| No log | 2.0 | 876 | 0.2261 | 0.8287 | 0.7679 | 0.7832 | 0.9269 | |
|
| No log | 3.0 | 1314 | 0.1996 | 0.8253 | 0.7827 | 0.7912 | 0.9414 | |
|
| No log | 4.0 | 1752 | 0.2183 | 0.8162 | 0.8006 | 0.8041 | 0.9435 | |
|
| No log | 5.0 | 2190 | 0.2120 | 0.8198 | 0.8025 | 0.8074 | 0.9496 | |
|
| No log | 6.0 | 2628 | 0.2339 | 0.8207 | 0.8068 | 0.8116 | 0.9489 | |
|
| No log | 7.0 | 3066 | 0.2728 | 0.8156 | 0.8045 | 0.8071 | 0.9486 | |
|
| No log | 8.0 | 3504 | 0.2790 | 0.8205 | 0.8110 | 0.8132 | 0.9527 | |
|
| No log | 9.0 | 3942 | 0.2854 | 0.8306 | 0.8096 | 0.8146 | 0.9527 | |
|
| No log | 10.0 | 4380 | 0.2906 | 0.8299 | 0.8115 | 0.8151 | 0.9534 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|