resnet101-base_tobacco-cnn_tobacco3482_hint
This model is a fine-tuned version of bdpc/resnet101-base_tobacco on the None dataset. It achieves the following results on the evaluation set:
- Loss: 24.6607
- Accuracy: 0.57
- Brier Loss: 0.6012
- Nll: 2.9238
- F1 Micro: 0.57
- F1 Macro: 0.5344
- Ece: 0.2496
- Aurc: 0.2274
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 27.2504 | 0.07 | 0.9006 | 8.5876 | 0.07 | 0.0131 | 0.1634 | 0.9646 |
No log | 2.0 | 14 | 27.1186 | 0.155 | 0.9229 | 12.2960 | 0.155 | 0.0268 | 0.2967 | 0.8769 |
No log | 3.0 | 21 | 27.9163 | 0.155 | 1.3722 | 11.2040 | 0.155 | 0.0268 | 0.6887 | 0.5963 |
No log | 4.0 | 28 | 28.2724 | 0.155 | 1.4334 | 9.3615 | 0.155 | 0.0273 | 0.7029 | 0.6185 |
No log | 5.0 | 35 | 26.9699 | 0.175 | 1.0316 | 5.3928 | 0.175 | 0.0465 | 0.4168 | 0.5989 |
No log | 6.0 | 42 | 26.1797 | 0.23 | 0.8746 | 3.9558 | 0.23 | 0.0993 | 0.3120 | 0.5627 |
No log | 7.0 | 49 | 25.8507 | 0.25 | 0.8299 | 3.2357 | 0.25 | 0.1721 | 0.2686 | 0.6618 |
No log | 8.0 | 56 | 25.7515 | 0.24 | 0.8336 | 2.7738 | 0.24 | 0.1579 | 0.2670 | 0.6619 |
No log | 9.0 | 63 | 25.3041 | 0.39 | 0.7346 | 2.5881 | 0.39 | 0.2914 | 0.2649 | 0.4362 |
No log | 10.0 | 70 | 25.1996 | 0.375 | 0.7406 | 2.7338 | 0.375 | 0.2616 | 0.2903 | 0.4923 |
No log | 11.0 | 77 | 25.0418 | 0.44 | 0.6756 | 3.2534 | 0.44 | 0.3173 | 0.2520 | 0.3197 |
No log | 12.0 | 84 | 25.3664 | 0.35 | 0.8231 | 3.6209 | 0.35 | 0.2628 | 0.2924 | 0.5484 |
No log | 13.0 | 91 | 25.0353 | 0.44 | 0.6927 | 3.5523 | 0.44 | 0.3230 | 0.2842 | 0.3332 |
No log | 14.0 | 98 | 25.2980 | 0.36 | 0.8265 | 3.3953 | 0.36 | 0.2859 | 0.3158 | 0.5347 |
No log | 15.0 | 105 | 24.8521 | 0.425 | 0.6604 | 3.0888 | 0.425 | 0.3379 | 0.2641 | 0.3096 |
No log | 16.0 | 112 | 24.8368 | 0.46 | 0.6622 | 2.7863 | 0.46 | 0.3626 | 0.2771 | 0.3429 |
No log | 17.0 | 119 | 25.0490 | 0.355 | 0.7909 | 2.9342 | 0.3550 | 0.2764 | 0.3300 | 0.5313 |
No log | 18.0 | 126 | 24.9950 | 0.4 | 0.7521 | 3.5010 | 0.4000 | 0.3467 | 0.2801 | 0.4721 |
No log | 19.0 | 133 | 24.7232 | 0.505 | 0.6259 | 2.9709 | 0.505 | 0.4017 | 0.2799 | 0.2807 |
No log | 20.0 | 140 | 24.7500 | 0.5 | 0.6408 | 3.1274 | 0.5 | 0.4278 | 0.2398 | 0.2752 |
No log | 21.0 | 147 | 24.5976 | 0.54 | 0.5922 | 2.7847 | 0.54 | 0.4872 | 0.2422 | 0.2319 |
No log | 22.0 | 154 | 24.9329 | 0.42 | 0.7518 | 2.9924 | 0.4200 | 0.3777 | 0.3094 | 0.4446 |
No log | 23.0 | 161 | 24.6088 | 0.535 | 0.6089 | 2.8494 | 0.535 | 0.5067 | 0.2756 | 0.2770 |
No log | 24.0 | 168 | 25.1851 | 0.39 | 0.8175 | 3.7625 | 0.39 | 0.3513 | 0.3211 | 0.5049 |
No log | 25.0 | 175 | 24.5058 | 0.585 | 0.5754 | 2.6524 | 0.585 | 0.5707 | 0.2296 | 0.2227 |
No log | 26.0 | 182 | 25.2073 | 0.435 | 0.7812 | 3.0365 | 0.435 | 0.3839 | 0.3190 | 0.5012 |
No log | 27.0 | 189 | 24.7752 | 0.54 | 0.6558 | 2.9071 | 0.54 | 0.4667 | 0.2669 | 0.2898 |
No log | 28.0 | 196 | 24.8546 | 0.515 | 0.6697 | 2.5989 | 0.515 | 0.4397 | 0.2943 | 0.3817 |
No log | 29.0 | 203 | 24.5759 | 0.56 | 0.5969 | 2.6234 | 0.56 | 0.5342 | 0.2609 | 0.2493 |
No log | 30.0 | 210 | 24.7052 | 0.53 | 0.6198 | 2.9462 | 0.53 | 0.4811 | 0.2779 | 0.2766 |
No log | 31.0 | 217 | 24.5828 | 0.545 | 0.6038 | 2.7967 | 0.545 | 0.4979 | 0.2455 | 0.2369 |
No log | 32.0 | 224 | 24.6622 | 0.545 | 0.6220 | 2.8878 | 0.545 | 0.4925 | 0.2854 | 0.2682 |
No log | 33.0 | 231 | 24.6253 | 0.57 | 0.5991 | 3.1607 | 0.57 | 0.5327 | 0.2869 | 0.2518 |
No log | 34.0 | 238 | 24.6230 | 0.535 | 0.6351 | 2.5626 | 0.535 | 0.5245 | 0.2766 | 0.3077 |
No log | 35.0 | 245 | 24.5803 | 0.59 | 0.5900 | 2.8215 | 0.59 | 0.5564 | 0.2724 | 0.2563 |
No log | 36.0 | 252 | 24.5679 | 0.57 | 0.5709 | 3.1573 | 0.57 | 0.5089 | 0.2523 | 0.2222 |
No log | 37.0 | 259 | 24.5375 | 0.575 | 0.5631 | 2.9349 | 0.575 | 0.5381 | 0.2279 | 0.2007 |
No log | 38.0 | 266 | 24.6423 | 0.565 | 0.6072 | 2.6772 | 0.565 | 0.5340 | 0.2587 | 0.2247 |
No log | 39.0 | 273 | 24.6706 | 0.575 | 0.6139 | 2.9241 | 0.575 | 0.5291 | 0.2318 | 0.2416 |
No log | 40.0 | 280 | 24.6007 | 0.575 | 0.5774 | 2.9918 | 0.575 | 0.5323 | 0.2575 | 0.2138 |
No log | 41.0 | 287 | 24.7587 | 0.565 | 0.6231 | 2.9588 | 0.565 | 0.5023 | 0.2685 | 0.2665 |
No log | 42.0 | 294 | 24.5681 | 0.56 | 0.5786 | 2.9999 | 0.56 | 0.5153 | 0.2558 | 0.2093 |
No log | 43.0 | 301 | 24.5971 | 0.59 | 0.5687 | 3.0595 | 0.59 | 0.5365 | 0.2532 | 0.2004 |
No log | 44.0 | 308 | 24.6424 | 0.58 | 0.5918 | 2.9073 | 0.58 | 0.5432 | 0.2470 | 0.2113 |
No log | 45.0 | 315 | 24.5998 | 0.58 | 0.5705 | 3.0442 | 0.58 | 0.5488 | 0.2769 | 0.2011 |
No log | 46.0 | 322 | 24.5625 | 0.62 | 0.5561 | 2.9855 | 0.62 | 0.5869 | 0.2492 | 0.2069 |
No log | 47.0 | 329 | 24.6409 | 0.57 | 0.5817 | 2.8587 | 0.57 | 0.5400 | 0.2480 | 0.2239 |
No log | 48.0 | 336 | 24.6218 | 0.57 | 0.5958 | 2.8299 | 0.57 | 0.5426 | 0.2725 | 0.2251 |
No log | 49.0 | 343 | 24.5568 | 0.585 | 0.5762 | 2.9178 | 0.585 | 0.5590 | 0.2374 | 0.2102 |
No log | 50.0 | 350 | 24.6607 | 0.57 | 0.6012 | 2.9238 | 0.57 | 0.5344 | 0.2496 | 0.2274 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 161
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.