resnet101-base_tobacco-cnn_tobacco3482_hint

This model is a fine-tuned version of bdpc/resnet101-base_tobacco on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 24.6607
  • Accuracy: 0.57
  • Brier Loss: 0.6012
  • Nll: 2.9238
  • F1 Micro: 0.57
  • F1 Macro: 0.5344
  • Ece: 0.2496
  • Aurc: 0.2274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 7 27.2504 0.07 0.9006 8.5876 0.07 0.0131 0.1634 0.9646
No log 2.0 14 27.1186 0.155 0.9229 12.2960 0.155 0.0268 0.2967 0.8769
No log 3.0 21 27.9163 0.155 1.3722 11.2040 0.155 0.0268 0.6887 0.5963
No log 4.0 28 28.2724 0.155 1.4334 9.3615 0.155 0.0273 0.7029 0.6185
No log 5.0 35 26.9699 0.175 1.0316 5.3928 0.175 0.0465 0.4168 0.5989
No log 6.0 42 26.1797 0.23 0.8746 3.9558 0.23 0.0993 0.3120 0.5627
No log 7.0 49 25.8507 0.25 0.8299 3.2357 0.25 0.1721 0.2686 0.6618
No log 8.0 56 25.7515 0.24 0.8336 2.7738 0.24 0.1579 0.2670 0.6619
No log 9.0 63 25.3041 0.39 0.7346 2.5881 0.39 0.2914 0.2649 0.4362
No log 10.0 70 25.1996 0.375 0.7406 2.7338 0.375 0.2616 0.2903 0.4923
No log 11.0 77 25.0418 0.44 0.6756 3.2534 0.44 0.3173 0.2520 0.3197
No log 12.0 84 25.3664 0.35 0.8231 3.6209 0.35 0.2628 0.2924 0.5484
No log 13.0 91 25.0353 0.44 0.6927 3.5523 0.44 0.3230 0.2842 0.3332
No log 14.0 98 25.2980 0.36 0.8265 3.3953 0.36 0.2859 0.3158 0.5347
No log 15.0 105 24.8521 0.425 0.6604 3.0888 0.425 0.3379 0.2641 0.3096
No log 16.0 112 24.8368 0.46 0.6622 2.7863 0.46 0.3626 0.2771 0.3429
No log 17.0 119 25.0490 0.355 0.7909 2.9342 0.3550 0.2764 0.3300 0.5313
No log 18.0 126 24.9950 0.4 0.7521 3.5010 0.4000 0.3467 0.2801 0.4721
No log 19.0 133 24.7232 0.505 0.6259 2.9709 0.505 0.4017 0.2799 0.2807
No log 20.0 140 24.7500 0.5 0.6408 3.1274 0.5 0.4278 0.2398 0.2752
No log 21.0 147 24.5976 0.54 0.5922 2.7847 0.54 0.4872 0.2422 0.2319
No log 22.0 154 24.9329 0.42 0.7518 2.9924 0.4200 0.3777 0.3094 0.4446
No log 23.0 161 24.6088 0.535 0.6089 2.8494 0.535 0.5067 0.2756 0.2770
No log 24.0 168 25.1851 0.39 0.8175 3.7625 0.39 0.3513 0.3211 0.5049
No log 25.0 175 24.5058 0.585 0.5754 2.6524 0.585 0.5707 0.2296 0.2227
No log 26.0 182 25.2073 0.435 0.7812 3.0365 0.435 0.3839 0.3190 0.5012
No log 27.0 189 24.7752 0.54 0.6558 2.9071 0.54 0.4667 0.2669 0.2898
No log 28.0 196 24.8546 0.515 0.6697 2.5989 0.515 0.4397 0.2943 0.3817
No log 29.0 203 24.5759 0.56 0.5969 2.6234 0.56 0.5342 0.2609 0.2493
No log 30.0 210 24.7052 0.53 0.6198 2.9462 0.53 0.4811 0.2779 0.2766
No log 31.0 217 24.5828 0.545 0.6038 2.7967 0.545 0.4979 0.2455 0.2369
No log 32.0 224 24.6622 0.545 0.6220 2.8878 0.545 0.4925 0.2854 0.2682
No log 33.0 231 24.6253 0.57 0.5991 3.1607 0.57 0.5327 0.2869 0.2518
No log 34.0 238 24.6230 0.535 0.6351 2.5626 0.535 0.5245 0.2766 0.3077
No log 35.0 245 24.5803 0.59 0.5900 2.8215 0.59 0.5564 0.2724 0.2563
No log 36.0 252 24.5679 0.57 0.5709 3.1573 0.57 0.5089 0.2523 0.2222
No log 37.0 259 24.5375 0.575 0.5631 2.9349 0.575 0.5381 0.2279 0.2007
No log 38.0 266 24.6423 0.565 0.6072 2.6772 0.565 0.5340 0.2587 0.2247
No log 39.0 273 24.6706 0.575 0.6139 2.9241 0.575 0.5291 0.2318 0.2416
No log 40.0 280 24.6007 0.575 0.5774 2.9918 0.575 0.5323 0.2575 0.2138
No log 41.0 287 24.7587 0.565 0.6231 2.9588 0.565 0.5023 0.2685 0.2665
No log 42.0 294 24.5681 0.56 0.5786 2.9999 0.56 0.5153 0.2558 0.2093
No log 43.0 301 24.5971 0.59 0.5687 3.0595 0.59 0.5365 0.2532 0.2004
No log 44.0 308 24.6424 0.58 0.5918 2.9073 0.58 0.5432 0.2470 0.2113
No log 45.0 315 24.5998 0.58 0.5705 3.0442 0.58 0.5488 0.2769 0.2011
No log 46.0 322 24.5625 0.62 0.5561 2.9855 0.62 0.5869 0.2492 0.2069
No log 47.0 329 24.6409 0.57 0.5817 2.8587 0.57 0.5400 0.2480 0.2239
No log 48.0 336 24.6218 0.57 0.5958 2.8299 0.57 0.5426 0.2725 0.2251
No log 49.0 343 24.5568 0.585 0.5762 2.9178 0.585 0.5590 0.2374 0.2102
No log 50.0 350 24.6607 0.57 0.6012 2.9238 0.57 0.5344 0.2496 0.2274

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.2.0.dev20231112+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
161
Safetensors
Model size
43.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jordyvl/resnet101-base_tobacco-cnn_tobacco3482_hint

Finetuned
(7)
this model