resnet101-base_tobacco-cnn_tobacco3482_kd_CEKD_t1.0_a0.5

This model is a fine-tuned version of bdpc/resnet101-base_tobacco on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8577
  • Accuracy: 0.53
  • Brier Loss: 0.6406
  • Nll: 2.1208
  • F1 Micro: 0.53
  • F1 Macro: 0.4957
  • Ece: 0.3004
  • Aurc: 0.3168

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 4 1.4267 0.05 0.9008 9.6592 0.0500 0.0177 0.1432 0.9439
No log 2.0 8 1.4006 0.155 0.8969 7.9140 0.155 0.0268 0.2365 0.9603
No log 3.0 12 1.4621 0.155 0.9457 13.3695 0.155 0.0268 0.3013 0.9107
No log 4.0 16 2.1836 0.155 1.3252 12.8977 0.155 0.0268 0.6400 0.7514
No log 5.0 20 2.4365 0.155 1.3998 8.4435 0.155 0.0268 0.7030 0.6102
No log 6.0 24 2.1554 0.155 1.2534 6.9190 0.155 0.0279 0.5987 0.6271
No log 7.0 28 1.5617 0.175 0.9637 5.7454 0.175 0.0462 0.3802 0.6485
No log 8.0 32 1.3267 0.245 0.8707 5.2368 0.245 0.0835 0.2961 0.5438
No log 9.0 36 1.2434 0.19 0.8886 5.0360 0.19 0.0471 0.3198 0.7720
No log 10.0 40 1.0721 0.305 0.8123 4.5157 0.305 0.1762 0.2684 0.5269
No log 11.0 44 1.1256 0.22 0.8429 3.9215 0.22 0.1083 0.2812 0.7346
No log 12.0 48 0.9865 0.35 0.7676 3.4553 0.35 0.2565 0.2884 0.4790
No log 13.0 52 1.0206 0.355 0.7899 3.3582 0.3550 0.2278 0.2954 0.5883
No log 14.0 56 0.9096 0.415 0.6994 3.2174 0.415 0.3147 0.2563 0.3596
No log 15.0 60 0.9187 0.415 0.7129 3.2059 0.415 0.2742 0.2941 0.3971
No log 16.0 64 0.8905 0.395 0.6956 2.9931 0.395 0.2618 0.2590 0.3826
No log 17.0 68 0.9108 0.425 0.7073 3.1634 0.425 0.2855 0.2995 0.3685
No log 18.0 72 0.8769 0.465 0.6706 3.1088 0.465 0.3652 0.2855 0.3261
No log 19.0 76 0.8585 0.475 0.6687 2.8710 0.4750 0.3884 0.2916 0.3282
No log 20.0 80 0.9822 0.405 0.7378 2.8889 0.405 0.3570 0.2850 0.4895
No log 21.0 84 0.9324 0.445 0.6992 2.7975 0.445 0.3553 0.3021 0.3762
No log 22.0 88 1.0330 0.42 0.7350 2.7487 0.4200 0.3506 0.2984 0.4771
No log 23.0 92 0.8755 0.455 0.6674 2.5903 0.455 0.3415 0.2570 0.3352
No log 24.0 96 0.8651 0.47 0.6443 2.8456 0.47 0.3800 0.2451 0.2975
No log 25.0 100 0.9567 0.445 0.7150 2.7083 0.445 0.3727 0.2667 0.4676
No log 26.0 104 1.0224 0.42 0.7376 2.4408 0.4200 0.3367 0.2968 0.5019
No log 27.0 108 0.8365 0.525 0.6407 2.6426 0.525 0.4496 0.2960 0.2657
No log 28.0 112 0.9798 0.425 0.7287 2.6379 0.425 0.3489 0.2640 0.4668
No log 29.0 116 0.9226 0.44 0.6965 2.5748 0.44 0.3669 0.2561 0.4054
No log 30.0 120 0.8303 0.49 0.6398 2.4839 0.49 0.3924 0.2981 0.2936
No log 31.0 124 0.8426 0.52 0.6478 2.5282 0.52 0.4322 0.3109 0.3084
No log 32.0 128 0.9111 0.45 0.6970 2.3870 0.45 0.3947 0.2837 0.4448
No log 33.0 132 0.8723 0.51 0.6524 2.6124 0.51 0.4170 0.2536 0.3365
No log 34.0 136 0.8936 0.47 0.6671 2.8892 0.47 0.3814 0.2436 0.3357
No log 35.0 140 1.2870 0.42 0.7660 4.4020 0.4200 0.3468 0.2860 0.4606
No log 36.0 144 0.9991 0.455 0.7289 2.6973 0.455 0.4132 0.3272 0.4684
No log 37.0 148 1.6352 0.365 0.8356 4.7695 0.3650 0.3020 0.3312 0.6069
No log 38.0 152 1.3014 0.39 0.8213 2.9436 0.39 0.3382 0.3262 0.5476
No log 39.0 156 1.0294 0.415 0.7361 2.7188 0.415 0.3446 0.2454 0.4632
No log 40.0 160 0.8825 0.52 0.6538 2.3887 0.52 0.4608 0.2721 0.3186
No log 41.0 164 0.8572 0.54 0.6288 2.4201 0.54 0.4822 0.2963 0.2899
No log 42.0 168 0.8393 0.535 0.6291 2.3587 0.535 0.4726 0.2824 0.2937
No log 43.0 172 0.8369 0.515 0.6303 2.4060 0.515 0.4583 0.2689 0.2903
No log 44.0 176 0.8458 0.49 0.6346 2.3323 0.49 0.4428 0.2526 0.2951
No log 45.0 180 0.8446 0.49 0.6367 2.2207 0.49 0.4289 0.2655 0.3041
No log 46.0 184 0.8324 0.54 0.6289 2.3685 0.54 0.4779 0.2571 0.2873
No log 47.0 188 0.8658 0.515 0.6486 2.3922 0.515 0.4584 0.2623 0.3100
No log 48.0 192 0.8516 0.525 0.6410 2.4448 0.525 0.4700 0.3006 0.3044
No log 49.0 196 0.8520 0.55 0.6350 2.2049 0.55 0.4947 0.3030 0.2980
No log 50.0 200 0.8577 0.53 0.6406 2.1208 0.53 0.4957 0.3004 0.3168

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.2.0.dev20231112+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
161
Safetensors
Model size
42.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jordyvl/resnet101-base_tobacco-cnn_tobacco3482_kd_CEKD_t1.0_a0.5

Finetuned
(7)
this model