resnet101-base_tobacco-cnn_tobacco3482_kd_MSE
This model is a fine-tuned version of bdpc/resnet101-base_tobacco on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1315
- Accuracy: 0.365
- Brier Loss: 0.7313
- Nll: 5.5846
- F1 Micro: 0.3650
- F1 Macro: 0.2369
- Ece: 0.2526
- Aurc: 0.4412
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 4 | 1.1507 | 0.1 | 0.8998 | 9.9508 | 0.1000 | 0.0462 | 0.1728 | 0.9208 |
No log | 2.0 | 8 | 0.9900 | 0.155 | 0.8924 | 9.6289 | 0.155 | 0.0268 | 0.2400 | 0.9571 |
No log | 3.0 | 12 | 0.8441 | 0.155 | 0.9273 | 8.9944 | 0.155 | 0.0268 | 0.3276 | 0.9345 |
No log | 4.0 | 16 | 1.4048 | 0.155 | 1.3149 | 8.9869 | 0.155 | 0.0268 | 0.6569 | 0.6091 |
No log | 5.0 | 20 | 1.0761 | 0.155 | 1.1553 | 8.9185 | 0.155 | 0.0272 | 0.5441 | 0.6112 |
No log | 6.0 | 24 | 1.1745 | 0.155 | 1.1386 | 9.2644 | 0.155 | 0.0304 | 0.4982 | 0.6120 |
No log | 7.0 | 28 | 0.4686 | 0.225 | 0.8829 | 7.3879 | 0.225 | 0.0724 | 0.3173 | 0.5804 |
No log | 8.0 | 32 | 0.3535 | 0.24 | 0.8393 | 7.0880 | 0.24 | 0.0797 | 0.2963 | 0.5518 |
No log | 9.0 | 36 | 0.2519 | 0.295 | 0.8157 | 6.6738 | 0.295 | 0.1375 | 0.2944 | 0.4810 |
No log | 10.0 | 40 | 0.2957 | 0.265 | 0.8432 | 6.8903 | 0.265 | 0.1030 | 0.3171 | 0.5807 |
No log | 11.0 | 44 | 0.5224 | 0.21 | 0.8832 | 8.6128 | 0.2100 | 0.0987 | 0.2948 | 0.6814 |
No log | 12.0 | 48 | 0.4088 | 0.18 | 0.8807 | 7.0533 | 0.18 | 0.0309 | 0.2966 | 0.7466 |
No log | 13.0 | 52 | 0.5082 | 0.225 | 0.8732 | 8.3126 | 0.225 | 0.0606 | 0.2761 | 0.7285 |
No log | 14.0 | 56 | 0.5253 | 0.18 | 0.8905 | 8.3229 | 0.18 | 0.0305 | 0.2973 | 0.7838 |
No log | 15.0 | 60 | 0.5612 | 0.225 | 0.8579 | 7.9410 | 0.225 | 0.0642 | 0.2690 | 0.7108 |
No log | 16.0 | 64 | 0.2805 | 0.28 | 0.8094 | 6.0275 | 0.28 | 0.1475 | 0.2633 | 0.5701 |
No log | 17.0 | 68 | 0.3076 | 0.32 | 0.8151 | 6.1462 | 0.32 | 0.1641 | 0.2852 | 0.6162 |
No log | 18.0 | 72 | 0.3824 | 0.29 | 0.8072 | 6.0214 | 0.29 | 0.1681 | 0.2900 | 0.6048 |
No log | 19.0 | 76 | 0.5089 | 0.19 | 0.8701 | 8.9391 | 0.19 | 0.0418 | 0.2582 | 0.7152 |
No log | 20.0 | 80 | 0.1490 | 0.335 | 0.7347 | 5.7349 | 0.335 | 0.1786 | 0.2500 | 0.4430 |
No log | 21.0 | 84 | 0.3448 | 0.255 | 0.8455 | 6.6598 | 0.255 | 0.0998 | 0.3124 | 0.7183 |
No log | 22.0 | 88 | 0.6254 | 0.22 | 0.8413 | 6.9926 | 0.22 | 0.0966 | 0.2654 | 0.7197 |
No log | 23.0 | 92 | 0.5464 | 0.215 | 0.8909 | 8.4952 | 0.2150 | 0.0570 | 0.2931 | 0.7084 |
No log | 24.0 | 96 | 0.4465 | 0.24 | 0.8445 | 7.2319 | 0.24 | 0.1396 | 0.2575 | 0.6667 |
No log | 25.0 | 100 | 0.3967 | 0.215 | 0.8547 | 6.7234 | 0.2150 | 0.0962 | 0.2913 | 0.7053 |
No log | 26.0 | 104 | 0.2459 | 0.295 | 0.8041 | 5.1627 | 0.295 | 0.1901 | 0.2525 | 0.6590 |
No log | 27.0 | 108 | 0.4125 | 0.19 | 0.8595 | 7.1181 | 0.19 | 0.0551 | 0.2707 | 0.7087 |
No log | 28.0 | 112 | 0.1686 | 0.36 | 0.7309 | 5.1322 | 0.36 | 0.2178 | 0.2296 | 0.4432 |
No log | 29.0 | 116 | 0.3573 | 0.205 | 0.8664 | 6.6815 | 0.205 | 0.0523 | 0.2753 | 0.7131 |
No log | 30.0 | 120 | 0.1634 | 0.32 | 0.7416 | 5.6798 | 0.32 | 0.1862 | 0.2473 | 0.4616 |
No log | 31.0 | 124 | 0.1404 | 0.35 | 0.7295 | 5.6538 | 0.35 | 0.2152 | 0.2688 | 0.4389 |
No log | 32.0 | 128 | 0.1435 | 0.325 | 0.7415 | 5.5376 | 0.325 | 0.1439 | 0.2567 | 0.4489 |
No log | 33.0 | 132 | 0.1428 | 0.33 | 0.7292 | 5.5151 | 0.33 | 0.1791 | 0.2502 | 0.4403 |
No log | 34.0 | 136 | 0.1602 | 0.33 | 0.7371 | 5.8829 | 0.33 | 0.1941 | 0.2542 | 0.4481 |
No log | 35.0 | 140 | 0.1663 | 0.325 | 0.7398 | 5.6501 | 0.325 | 0.1880 | 0.2443 | 0.4564 |
No log | 36.0 | 144 | 0.1637 | 0.35 | 0.7422 | 5.9440 | 0.35 | 0.2053 | 0.2748 | 0.4361 |
No log | 37.0 | 148 | 0.1520 | 0.325 | 0.7317 | 5.3284 | 0.325 | 0.1787 | 0.2677 | 0.4531 |
No log | 38.0 | 152 | 0.1585 | 0.335 | 0.7385 | 5.9712 | 0.335 | 0.1939 | 0.2648 | 0.4483 |
No log | 39.0 | 156 | 0.1491 | 0.335 | 0.7334 | 5.6729 | 0.335 | 0.1912 | 0.2533 | 0.4404 |
No log | 40.0 | 160 | 0.1367 | 0.32 | 0.7297 | 5.7350 | 0.32 | 0.1818 | 0.2512 | 0.4498 |
No log | 41.0 | 164 | 0.2089 | 0.335 | 0.7583 | 5.2150 | 0.335 | 0.2073 | 0.2822 | 0.4712 |
No log | 42.0 | 168 | 0.1612 | 0.335 | 0.7323 | 4.9145 | 0.335 | 0.2058 | 0.2696 | 0.4482 |
No log | 43.0 | 172 | 0.1616 | 0.335 | 0.7349 | 5.4305 | 0.335 | 0.1916 | 0.2650 | 0.4493 |
No log | 44.0 | 176 | 0.1477 | 0.335 | 0.7335 | 5.3482 | 0.335 | 0.1761 | 0.2478 | 0.4410 |
No log | 45.0 | 180 | 0.1426 | 0.34 | 0.7321 | 5.4265 | 0.34 | 0.2018 | 0.2307 | 0.4483 |
No log | 46.0 | 184 | 0.1531 | 0.345 | 0.7351 | 5.2269 | 0.345 | 0.2108 | 0.2812 | 0.4572 |
No log | 47.0 | 188 | 0.1426 | 0.34 | 0.7299 | 5.1412 | 0.34 | 0.2040 | 0.2418 | 0.4443 |
No log | 48.0 | 192 | 0.1321 | 0.335 | 0.7353 | 5.2955 | 0.335 | 0.2017 | 0.2515 | 0.4547 |
No log | 49.0 | 196 | 0.1330 | 0.34 | 0.7332 | 5.5391 | 0.34 | 0.2065 | 0.2485 | 0.4524 |
No log | 50.0 | 200 | 0.1315 | 0.365 | 0.7313 | 5.5846 | 0.3650 | 0.2369 | 0.2526 | 0.4412 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 190
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.