resnet101-base_tobacco-cnn_tobacco3482_kd_MSE

This model is a fine-tuned version of bdpc/resnet101-base_tobacco on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1315
  • Accuracy: 0.365
  • Brier Loss: 0.7313
  • Nll: 5.5846
  • F1 Micro: 0.3650
  • F1 Macro: 0.2369
  • Ece: 0.2526
  • Aurc: 0.4412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 4 1.1507 0.1 0.8998 9.9508 0.1000 0.0462 0.1728 0.9208
No log 2.0 8 0.9900 0.155 0.8924 9.6289 0.155 0.0268 0.2400 0.9571
No log 3.0 12 0.8441 0.155 0.9273 8.9944 0.155 0.0268 0.3276 0.9345
No log 4.0 16 1.4048 0.155 1.3149 8.9869 0.155 0.0268 0.6569 0.6091
No log 5.0 20 1.0761 0.155 1.1553 8.9185 0.155 0.0272 0.5441 0.6112
No log 6.0 24 1.1745 0.155 1.1386 9.2644 0.155 0.0304 0.4982 0.6120
No log 7.0 28 0.4686 0.225 0.8829 7.3879 0.225 0.0724 0.3173 0.5804
No log 8.0 32 0.3535 0.24 0.8393 7.0880 0.24 0.0797 0.2963 0.5518
No log 9.0 36 0.2519 0.295 0.8157 6.6738 0.295 0.1375 0.2944 0.4810
No log 10.0 40 0.2957 0.265 0.8432 6.8903 0.265 0.1030 0.3171 0.5807
No log 11.0 44 0.5224 0.21 0.8832 8.6128 0.2100 0.0987 0.2948 0.6814
No log 12.0 48 0.4088 0.18 0.8807 7.0533 0.18 0.0309 0.2966 0.7466
No log 13.0 52 0.5082 0.225 0.8732 8.3126 0.225 0.0606 0.2761 0.7285
No log 14.0 56 0.5253 0.18 0.8905 8.3229 0.18 0.0305 0.2973 0.7838
No log 15.0 60 0.5612 0.225 0.8579 7.9410 0.225 0.0642 0.2690 0.7108
No log 16.0 64 0.2805 0.28 0.8094 6.0275 0.28 0.1475 0.2633 0.5701
No log 17.0 68 0.3076 0.32 0.8151 6.1462 0.32 0.1641 0.2852 0.6162
No log 18.0 72 0.3824 0.29 0.8072 6.0214 0.29 0.1681 0.2900 0.6048
No log 19.0 76 0.5089 0.19 0.8701 8.9391 0.19 0.0418 0.2582 0.7152
No log 20.0 80 0.1490 0.335 0.7347 5.7349 0.335 0.1786 0.2500 0.4430
No log 21.0 84 0.3448 0.255 0.8455 6.6598 0.255 0.0998 0.3124 0.7183
No log 22.0 88 0.6254 0.22 0.8413 6.9926 0.22 0.0966 0.2654 0.7197
No log 23.0 92 0.5464 0.215 0.8909 8.4952 0.2150 0.0570 0.2931 0.7084
No log 24.0 96 0.4465 0.24 0.8445 7.2319 0.24 0.1396 0.2575 0.6667
No log 25.0 100 0.3967 0.215 0.8547 6.7234 0.2150 0.0962 0.2913 0.7053
No log 26.0 104 0.2459 0.295 0.8041 5.1627 0.295 0.1901 0.2525 0.6590
No log 27.0 108 0.4125 0.19 0.8595 7.1181 0.19 0.0551 0.2707 0.7087
No log 28.0 112 0.1686 0.36 0.7309 5.1322 0.36 0.2178 0.2296 0.4432
No log 29.0 116 0.3573 0.205 0.8664 6.6815 0.205 0.0523 0.2753 0.7131
No log 30.0 120 0.1634 0.32 0.7416 5.6798 0.32 0.1862 0.2473 0.4616
No log 31.0 124 0.1404 0.35 0.7295 5.6538 0.35 0.2152 0.2688 0.4389
No log 32.0 128 0.1435 0.325 0.7415 5.5376 0.325 0.1439 0.2567 0.4489
No log 33.0 132 0.1428 0.33 0.7292 5.5151 0.33 0.1791 0.2502 0.4403
No log 34.0 136 0.1602 0.33 0.7371 5.8829 0.33 0.1941 0.2542 0.4481
No log 35.0 140 0.1663 0.325 0.7398 5.6501 0.325 0.1880 0.2443 0.4564
No log 36.0 144 0.1637 0.35 0.7422 5.9440 0.35 0.2053 0.2748 0.4361
No log 37.0 148 0.1520 0.325 0.7317 5.3284 0.325 0.1787 0.2677 0.4531
No log 38.0 152 0.1585 0.335 0.7385 5.9712 0.335 0.1939 0.2648 0.4483
No log 39.0 156 0.1491 0.335 0.7334 5.6729 0.335 0.1912 0.2533 0.4404
No log 40.0 160 0.1367 0.32 0.7297 5.7350 0.32 0.1818 0.2512 0.4498
No log 41.0 164 0.2089 0.335 0.7583 5.2150 0.335 0.2073 0.2822 0.4712
No log 42.0 168 0.1612 0.335 0.7323 4.9145 0.335 0.2058 0.2696 0.4482
No log 43.0 172 0.1616 0.335 0.7349 5.4305 0.335 0.1916 0.2650 0.4493
No log 44.0 176 0.1477 0.335 0.7335 5.3482 0.335 0.1761 0.2478 0.4410
No log 45.0 180 0.1426 0.34 0.7321 5.4265 0.34 0.2018 0.2307 0.4483
No log 46.0 184 0.1531 0.345 0.7351 5.2269 0.345 0.2108 0.2812 0.4572
No log 47.0 188 0.1426 0.34 0.7299 5.1412 0.34 0.2040 0.2418 0.4443
No log 48.0 192 0.1321 0.335 0.7353 5.2955 0.335 0.2017 0.2515 0.4547
No log 49.0 196 0.1330 0.34 0.7332 5.5391 0.34 0.2065 0.2485 0.4524
No log 50.0 200 0.1315 0.365 0.7313 5.5846 0.3650 0.2369 0.2526 0.4412

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.2.0.dev20231112+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
190
Safetensors
Model size
42.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jordyvl/resnet101-base_tobacco-cnn_tobacco3482_kd_MSE

Finetuned
(7)
this model