resnet101-base_tobacco-cnn_tobacco3482_simkd
This model is a fine-tuned version of bdpc/resnet101-base_tobacco on the None dataset. It achieves the following results on the evaluation set:
- Loss: 13.1229
- Accuracy: 0.295
- Brier Loss: 0.7636
- Nll: 6.8757
- F1 Micro: 0.295
- F1 Macro: 0.1150
- Ece: 0.2446
- Aurc: 0.4919
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 0.2512 | 0.18 | 0.9617 | 7.0686 | 0.18 | 0.0305 | 0.3439 | 0.7810 |
No log | 2.0 | 14 | 0.3629 | 0.18 | 1.0943 | 7.0153 | 0.18 | 0.0305 | 0.4345 | 0.8186 |
No log | 3.0 | 21 | 0.4745 | 0.18 | 1.1577 | 6.9805 | 0.18 | 0.0305 | 0.5034 | 0.8029 |
No log | 4.0 | 28 | 0.6953 | 0.18 | 1.1290 | 6.9352 | 0.18 | 0.0305 | 0.4731 | 0.8367 |
No log | 5.0 | 35 | 173.4450 | 0.18 | 1.1346 | 6.8314 | 0.18 | 0.0305 | 0.4615 | 0.8814 |
No log | 6.0 | 42 | 412.7549 | 0.18 | 1.1098 | 6.8364 | 0.18 | 0.0305 | 0.4420 | 0.8716 |
No log | 7.0 | 49 | 148.0839 | 0.18 | 1.0291 | 6.9271 | 0.18 | 0.0305 | 0.3960 | 0.7698 |
No log | 8.0 | 56 | 61.2696 | 0.18 | 0.9674 | 6.9593 | 0.18 | 0.0305 | 0.3413 | 0.7924 |
No log | 9.0 | 63 | 175.4512 | 0.18 | 0.9708 | 6.9854 | 0.18 | 0.0305 | 0.3549 | 0.8252 |
No log | 10.0 | 70 | 139.2036 | 0.18 | 0.9400 | 6.9022 | 0.18 | 0.0305 | 0.3300 | 0.7760 |
No log | 11.0 | 77 | 12.5605 | 0.295 | 0.8656 | 6.9766 | 0.295 | 0.1138 | 0.3093 | 0.5354 |
No log | 12.0 | 84 | 2.3147 | 0.18 | 0.9363 | 6.9778 | 0.18 | 0.0305 | 0.3084 | 0.7507 |
No log | 13.0 | 91 | 75.2050 | 0.18 | 0.9543 | 9.1566 | 0.18 | 0.0305 | 0.2990 | 0.7716 |
No log | 14.0 | 98 | 37.4873 | 0.18 | 0.9410 | 9.1473 | 0.18 | 0.0305 | 0.3029 | 0.7517 |
No log | 15.0 | 105 | 8.5750 | 0.18 | 0.9304 | 9.1440 | 0.18 | 0.0305 | 0.3033 | 0.7718 |
No log | 16.0 | 112 | 21.5310 | 0.18 | 0.9232 | 9.1349 | 0.18 | 0.0305 | 0.3122 | 0.7717 |
No log | 17.0 | 119 | 66.9546 | 0.18 | 0.9287 | 9.1376 | 0.18 | 0.0305 | 0.2920 | 0.7715 |
No log | 18.0 | 126 | 2.6525 | 0.285 | 0.8357 | 7.0773 | 0.285 | 0.1143 | 0.3156 | 0.5306 |
No log | 19.0 | 133 | 7.7253 | 0.24 | 0.8574 | 7.0190 | 0.24 | 0.0880 | 0.2948 | 0.7186 |
No log | 20.0 | 140 | 30.0305 | 0.285 | 0.8086 | 6.9862 | 0.285 | 0.1133 | 0.3001 | 0.5273 |
No log | 21.0 | 147 | 3.9243 | 0.18 | 0.8680 | 7.4799 | 0.18 | 0.0306 | 0.2739 | 0.7704 |
No log | 22.0 | 154 | 4.4660 | 0.18 | 0.8831 | 8.9935 | 0.18 | 0.0308 | 0.2652 | 0.7313 |
No log | 23.0 | 161 | 3.9728 | 0.18 | 0.8719 | 8.9609 | 0.18 | 0.0308 | 0.2600 | 0.7651 |
No log | 24.0 | 168 | 2.6913 | 0.285 | 0.8089 | 6.9969 | 0.285 | 0.1146 | 0.2873 | 0.5122 |
No log | 25.0 | 175 | 1.3141 | 0.29 | 0.8086 | 7.0227 | 0.29 | 0.1156 | 0.3154 | 0.5256 |
No log | 26.0 | 182 | 13.5853 | 0.29 | 0.7782 | 6.8763 | 0.29 | 0.1168 | 0.2735 | 0.5045 |
No log | 27.0 | 189 | 11.9763 | 0.3 | 0.7730 | 6.8499 | 0.3 | 0.1171 | 0.2740 | 0.4971 |
No log | 28.0 | 196 | 1.6467 | 0.285 | 0.8067 | 7.1641 | 0.285 | 0.1144 | 0.2870 | 0.5193 |
No log | 29.0 | 203 | 30.5306 | 0.285 | 0.8424 | 7.1576 | 0.285 | 0.1129 | 0.2686 | 0.6662 |
No log | 30.0 | 210 | 13.5964 | 0.18 | 0.8584 | 7.0972 | 0.18 | 0.0305 | 0.2704 | 0.7307 |
No log | 31.0 | 217 | 98.3061 | 0.29 | 0.8274 | 7.0330 | 0.29 | 0.1167 | 0.3163 | 0.5653 |
No log | 32.0 | 224 | 53.0911 | 0.29 | 0.7984 | 6.9311 | 0.29 | 0.1167 | 0.2911 | 0.5181 |
No log | 33.0 | 231 | 2.2010 | 0.265 | 0.8291 | 6.9883 | 0.265 | 0.1037 | 0.2945 | 0.6039 |
No log | 34.0 | 238 | 3.6255 | 0.295 | 0.7836 | 6.8954 | 0.295 | 0.1176 | 0.2636 | 0.5025 |
No log | 35.0 | 245 | 0.9640 | 0.3 | 0.7571 | 6.7913 | 0.3 | 0.1170 | 0.2388 | 0.4746 |
No log | 36.0 | 252 | 1.1935 | 0.295 | 0.7711 | 6.7993 | 0.295 | 0.1175 | 0.2619 | 0.4779 |
No log | 37.0 | 259 | 12.7465 | 0.305 | 0.7650 | 6.8142 | 0.305 | 0.1205 | 0.2512 | 0.4798 |
No log | 38.0 | 266 | 56.6876 | 0.305 | 0.7840 | 6.8750 | 0.305 | 0.1205 | 0.2835 | 0.4985 |
No log | 39.0 | 273 | 122.6602 | 0.295 | 0.7919 | 6.9220 | 0.295 | 0.1116 | 0.2493 | 0.5312 |
No log | 40.0 | 280 | 14.4685 | 0.295 | 0.7757 | 6.8232 | 0.295 | 0.1162 | 0.2575 | 0.4988 |
No log | 41.0 | 287 | 3.9605 | 0.295 | 0.7601 | 6.7809 | 0.295 | 0.1138 | 0.2437 | 0.4911 |
No log | 42.0 | 294 | 7.9424 | 0.295 | 0.7567 | 6.7609 | 0.295 | 0.1138 | 0.2398 | 0.4883 |
No log | 43.0 | 301 | 17.7810 | 0.295 | 0.7713 | 6.8075 | 0.295 | 0.1175 | 0.2503 | 0.5090 |
No log | 44.0 | 308 | 30.8773 | 0.295 | 0.7747 | 6.8248 | 0.295 | 0.1127 | 0.2651 | 0.5149 |
No log | 45.0 | 315 | 16.3877 | 0.29 | 0.7736 | 6.8888 | 0.29 | 0.1117 | 0.2641 | 0.5026 |
No log | 46.0 | 322 | 7.4195 | 0.29 | 0.7674 | 6.8179 | 0.29 | 0.1117 | 0.2621 | 0.4991 |
No log | 47.0 | 329 | 9.6560 | 0.295 | 0.7694 | 6.8960 | 0.295 | 0.1138 | 0.2604 | 0.4963 |
No log | 48.0 | 336 | 6.6040 | 0.29 | 0.7622 | 6.7835 | 0.29 | 0.1117 | 0.2271 | 0.4958 |
No log | 49.0 | 343 | 10.3365 | 0.29 | 0.7640 | 6.8293 | 0.29 | 0.1117 | 0.2583 | 0.4941 |
No log | 50.0 | 350 | 13.1229 | 0.295 | 0.7636 | 6.8757 | 0.295 | 0.1150 | 0.2446 | 0.4919 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.