ProCALM / model.py
jsunn-y
added the model file
6d75398
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified forward-pass implementation based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/gptj/modeling_gptj.py
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union, Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (
BaseModelOutputWithPast as _BaseModelOutputWithPast,
)
from transformers.modeling_outputs import (
CausalLMOutputWithPast as _CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from .adapter import ParallelAdapterLayer, ProjectionMLP
from .config import ProGenConfig, ProGenConditionalConfig
from ..utils import exists
logger = logging.get_logger(__name__)
@dataclass
class BaseModelOutputWithPast(_BaseModelOutputWithPast):
inputs: Optional[Union[torch.LongTensor, torch.FloatTensor]] = None
@dataclass
class CausalLMOutputWithPast(_CausalLMOutputWithPast):
all_losses: Optional[torch.FloatTensor] = None
inputs: Optional[Union[torch.LongTensor, torch.FloatTensor]] = None
def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
dim = x.shape[-1]
if seq_len is None:
seq_len = x.shape[seq_dim]
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
sinusoid_inp = (
torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq).to(x.device).float()
)
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
def rotate_every_two(x):
x1 = x[:, :, :, ::2]
x2 = x[:, :, :, 1::2]
x = torch.stack((-x2, x1), axis=-1)
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
def apply_rotary_pos_emb(x, sincos, offset=0):
sin, cos = map(
lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave(2, 3), sincos
)
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
return (x * cos) + (rotate_every_two(x) * sin)
class ProGenAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
max_positions = config.max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
1, 1, max_positions, max_positions
),
)
self.register_buffer("masked_bias", torch.tensor(-1e9))
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.attn_pdrop = config.attn_pdrop
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.embed_dim = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_attention_heads
if self.head_dim * self.num_attention_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and `num_attention_heads`: {self.num_attention_heads})."
)
self.scale_attn = math.sqrt(self.head_dim)
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.rotary_dim = None
if config.rotary_dim is not None:
self.rotary_dim = config.rotary_dim
def _split_heads(self, x, n_head, dim_head, mp_num):
reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
return reshaped
def _naive_attn(
self,
query,
key,
value,
attention_mask=None,
):
# compute causal mask from causal mask buffer
batch_size, query_length, key_length = query.size(0), query.size(-2), key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
attn_weights = torch.matmul(query, key.transpose(-1, -2)) / self.scale_attn
attn_weights = torch.where(
causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype)
)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = self.attn_dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value)
expected_size = (batch_size, self.num_attention_heads, query_length, self.head_dim)
if attn_output.size() != expected_size:
raise ValueError(
f"`attn_output` should be of size {expected_size}, but is {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, query_length, self.embed_dim)
return attn_output, attn_weights
def _sdpa_attn(
self,
query,
key,
value,
attention_mask=None,
):
bsz, q_len = query.shape[0], query.shape[2]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query.device.type == "cuda" and attention_mask is not None:
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
attn_output = F.scaled_dot_product_attention(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=self.attn_pdrop if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=q_len > 1,
scale=1 / self.scale_attn,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim)
return attn_output, None
def forward(
self,
hidden_states,
attention_mask=None,
layer_past=None,
use_cache=False,
output_attentions=False,
):
qkv = self.qkv_proj(hidden_states)
# TODO(enijkamp): factor out number of logical TPU-v3/v4 cores or make forward pass agnostic
# mp_num = 4
mp_num = 8
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
local_dim = self.head_dim * self.num_attention_heads // mp_num
query, value, key = torch.split(qkv_split, local_dim, dim=-1)
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
value = value.permute(0, 2, 1, 3)
seq_len = key.shape[1]
offset = 0
if layer_past is not None:
offset = layer_past[0].shape[-2]
seq_len += offset
if self.rotary_dim is not None:
k_rot = key[:, :, :, : self.rotary_dim]
k_pass = key[:, :, :, self.rotary_dim :]
q_rot = query[:, :, :, : self.rotary_dim]
q_pass = query[:, :, :, self.rotary_dim :]
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)
key = torch.cat([k_rot, k_pass], dim=-1)
query = torch.cat([q_rot, q_pass], dim=-1)
else:
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
key = apply_rotary_pos_emb(key, sincos, offset=offset)
query = apply_rotary_pos_emb(query, sincos, offset=offset)
key = key.permute(0, 2, 1, 3)
query = query.permute(0, 2, 1, 3)
if layer_past is not None:
past_key = layer_past[0]
past_value = layer_past[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query.dtype
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.qkv_proj.weight.dtype #this is giving an issue, but it usually isn't called
if input_dtype != target_dtype:
logger.warning_once(
f"The input hidden states seems to be silently casted in {input_dtype}. "
f"This might be because you have upcasted embedding or layer norm layers "
f"in {input_dtype}. We will cast back the input in {target_dtype}."
)
query = query.to(target_dtype)
key = key.to(target_dtype)
value = value.to(target_dtype)
# compute self-attention: V x Softmax(QK^T)
if output_attentions:
attn_output, attn_weights = self._naive_attn(query, key, value, attention_mask)
else:
attn_output, attn_weights = self._sdpa_attn(query, key, value, None)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
class ProGenMLP(nn.Module):
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
super().__init__()
embed_dim = config.n_embd
self.fc_in = nn.Linear(embed_dim, intermediate_size)
self.fc_out = nn.Linear(intermediate_size, embed_dim)
self.act = ACT2FN[config.activation_function]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, hidden_states):
hidden_states = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc_out(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class ProGenBlock(nn.Module):
def __init__(self, config):
super().__init__()
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = ProGenAttention(config)
self.mlp = ProGenMLP(inner_dim, config)
def forward(
self,
hidden_states,
layer_past=None,
attention_mask=None,
head_mask=None,
adapter_layer=None,
adapter_dropout=None,
adapter_input=None,
use_cache=False,
output_attentions=False,
):
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
outputs = attn_outputs[1:]
feed_forward_hidden_states = self.mlp(hidden_states)
### addition of adapter layer ###
if exists(adapter_layer) and exists(adapter_dropout) and exists(
adapter_input):
hidden_states_update = attn_output + feed_forward_hidden_states
adapter_out = adapter_layer(hidden_states_update, adapter_input)
adapter_out = adapter_dropout(adapter_out)
hidden_states_update = hidden_states_update + adapter_out
hidden_states = hidden_states_update + residual
else:
hidden_states = attn_output + feed_forward_hidden_states + residual
### end of addition of adapter layer ###
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs
class ProGenPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and a simple interface for downloading
and loading pretrained models."""
config_class = ProGenConfig
base_model_prefix = "transformer"
is_parallelizable = True
_no_split_modules = ["ProGenBlock"]
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear,)):
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class ModularProGenModel(ProGenPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embed_dim = config.n_embd
self.vocab_size = config.vocab_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList(
[ProGenBlock(config) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.rotary_dim = min(config.rotary_dim,
config.n_ctx // config.num_attention_heads)
self.init_weights()
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
def forward_prep(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if getattr(self.config, "gradient_checkpointing",
False) and self.training:
#print('using gradient checkpointing')
if use_cache:
use_cache = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError(
"You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length,
input_shape[-1] + past_length,
dtype=torch.long,
device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# Attention mask.
if attention_mask is not None:
assert batch_size > 0, "batch_size has to be defined and > 0"
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(
dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x num_attention_heads x N x N
# head_mask has shape n_layer x batch x num_attention_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
return input_ids, attention_mask, head_mask, position_ids, token_type_ids, inputs_embeds, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict
def forward_embed(
self,
input_ids=None,
token_type_ids=None,
inputs_embeds=None,
):
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
hidden_states = inputs_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
return hidden_states
def forward_layer(
self,
hidden_states,
layer_i,
layer_past=None,
attention_mask=None,
head_mask=None,
adapter_layer=None,
adapter_dropout=None,
adapter_input=None,
use_cache=None,
output_attentions=None,
):
if getattr(self.config, "gradient_checkpointing",
False) and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
"`use_cache=False`...")
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.h[layer_i]),
hidden_states,
None,
attention_mask,
head_mask[layer_i],
adapter_layer,
adapter_dropout,
adapter_input,
)
else:
outputs = self.h[layer_i](
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[layer_i],
adapter_layer=adapter_layer,
adapter_dropout=adapter_dropout,
adapter_input=adapter_input,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache:
presents = (outputs[1], )
else:
presents = None
if output_attentions:
self_attentions = outputs[2 if use_cache else 1]
else:
self_attentions = None
return hidden_states, presents, self_attentions
def forward_layers(
self,
hidden_states,
past_key_values=None,
attention_mask=None,
head_mask=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
):
all_presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i in range(self.config.n_layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
hidden_states, presents, self_attentions = self.forward_layer(
hidden_states,
i,
layer_past=past_key_values[i]
if past_key_values is not None else None,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
if use_cache is True:
all_presents = all_presents + presents
if output_attentions:
all_self_attentions = all_self_attentions + (self_attentions, )
return hidden_states, all_presents, all_self_attentions, all_hidden_states
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_shape = input_ids.size()
input_ids, attention_mask, head_mask, position_ids, token_type_ids, inputs_embeds, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict = self.forward_prep(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = self.forward_embed(
input_ids=input_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
hidden_states, all_presents, all_self_attentions, all_hidden_states = self.forward_layers(
hidden_states=hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = self(hidden_states)
output_shape = input_shape + (hidden_states.size(-1), )
hidden_states = hidden_states.view(*output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
if not return_dict:
return tuple(v for v in [
hidden_states, all_presents, all_hidden_states,
all_self_attentions
] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=all_presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class ModularProGenForCausalLM(ProGenPreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head\.weight"
]
def __init__(self, config):
super().__init__(config)
self.transformer = ModularProGenModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
self.init_weights()
def get_output_embeddings(self):
return None
def set_output_embeddings(self, new_embeddings):
return
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# make sure sampling in fp16 works correctly and
# compute loss in fp32 to match with mesh-tf version
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
lm_logits = self.lm_head(hidden_states).to(torch.float32)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1))
loss = loss.to(hidden_states.dtype)
if not return_dict:
output = (lm_logits, ) + transformer_outputs[1:]
return ((loss, ) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@staticmethod
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]],
beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past) for layer_past in past)
class ProgenConditional(ProGenPreTrainedModel): #nn.Module
def __init__(self, config: ProGenConditionalConfig):
super().__init__(config)
#self.model = ModularProGenForCausalLM.from_pretrained(pretrained_model_name_or_path=config.pretrained_model_dir, config=config)
self.model = ModularProGenForCausalLM.from_pretrained("jsunn-y/ProCALM", subfolder="progen2-base", config=config, cache_dir=config.pretrained_model_dir)
self.model.requires_grad_(False) #freeze the pretrained model by default
self.config = config
self.projection_mlps = torch.nn.ModuleDict() #conditioning encoders
if config.adapter_shared_projection == True:
n_projection_mlps = 1 #sharing a projector
else:
n_projection_mlps = len(self.model.transformer.h) #having a projector for every layer
for key, input_dim in config.encoding_dimensions.items():
adapter_projection_layers = nn.ModuleList()
for i in range(n_projection_mlps):
if config.adapter_projection_nlayers == None:
projection_mlp = torch.nn.Linear(input_dim, config.adapter_c_s)
else:
projection_mlp = ProjectionMLP(input_dim=input_dim, c_s=config.adapter_c_s, num_layers=config.adapter_projection_nlayers)
adapter_projection_layers.append(projection_mlp)
self.projection_mlps[key] = adapter_projection_layers
#if using a shared adapter, append an extra MLP to process the summed input
#not necessary if you have a separate adapter for each layer
#this one is always nonlinear and uses two layers
if (config.conditions_shared_adapter == True) and (len(config.encoding_dimensions.values()) >=2):
adapter_projection_layers = nn.ModuleList()
for i in range(n_projection_mlps):
projection_mlp = ProjectionMLP(input_dim=config.adapter_c_s, c_s=config.adapter_c_s, num_layers=2)
adapter_projection_layers.append(projection_mlp)
self.projection_mlps["combination"] = adapter_projection_layers
#initialize the adapter layers
self.adapter_layers = torch.nn.ModuleList()
if config.conditions_shared_adapter == False:
keys = config.encoding_dimensions.keys()
else:
keys = ["joint"]
n_parallel = len(keys)
for i in range(len(self.model.transformer.h)):
parallel_adapter_layer = ParallelAdapterLayer(
n_parallel=n_parallel,
c_s=config.adapter_c_s,
c_h=config.n_embd,
adapter_summation=config.adapter_summation,
weight_init=config.adapter_weight_init,
adapter_nlayers=config.adapter_nlayers,
)
adapter_dropout = torch.nn.Dropout(config.adapter_dropout)
self.adapter_layers.append(nn.ModuleList([parallel_adapter_layer, adapter_dropout]))
def prepare_inputs_for_generation(self, input_ids, condition_encodings: Dict[str, torch.tensor] = None, past=None, **kwargs):
"""
Overides the prepare inputs for generation function (HF compatible) to allow for the addition of adapter input.
"""
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
past = kwargs.get("past_key_values", past)
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
adapter_input = {}
for key, condition_encoding in condition_encodings.items():
if condition_encoding is not None:
single_adapter_input = condition_encoding.repeat(input_ids.shape[0], input_ids.shape[1], 1)
else:
single_adapter_input = None
adapter_input[key] = single_adapter_input
return {
"input_ids": input_ids,
"past_key_values": past,
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"adapter_input": adapter_input,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
if isinstance(past_key_values, Cache):
return past_key_values.reorder_cache(beam_idx)
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return DynamicCache.from_legacy_cache(reordered_past)
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
adapter_input=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_shape = input_ids.size()
input_ids, attention_mask, head_mask, position_ids, token_type_ids, inputs_embeds, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict = self.model.transformer.forward_prep(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = self.model.transformer.forward_embed(
input_ids=input_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
all_presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
#project the condition to the dimension of the adapter
#if sharing a single projection layer
#else do nothing until we get into the loop
if self.config.adapter_shared_projection == True:
encoded_adapter_input = ()
#if you're sharing an adapter and doing joint conditioning
if len(adapter_input.keys()) >= 2 and self.config.conditions_shared_adapter == True:
summed_adapter_input = torch.zeros(input_shape[0], input_shape[1], self.config.adapter_c_s).to(input_ids.device)
for key, single_adapter_input in adapter_input.items():
projected_adapter_input = self.projection_mlps[key][0](single_adapter_input)
summed_adapter_input += projected_adapter_input
#combine the inputs and pass through one
key = "combination"
summed_adapter_input = self.projection_mlps[key][0](summed_adapter_input)
encoded_adapter_input = (summed_adapter_input, )
#if you're not sharing an adapter (with or without multiple conditions)
else:
for key, value in adapter_input.items():
summed_adapter_input = self.projection_mlps[key][0](value)
encoded_adapter_input = encoded_adapter_input + (summed_adapter_input, )
encoded_adapter_input = torch.stack(encoded_adapter_input, dim=0)
for i in range(len(self.model.transformer.h)):
#if not sharing a projection layer
if self.config.adapter_shared_projection == False:
encoded_adapter_input = ()
#if you're sharing an adapter and doing joint conditioning
if len(adapter_input.keys()) >= 2 and self.config.conditions_shared_adapter == True:
summed_adapter_input = torch.zeros(input_shape[0], input_shape[1], self.config.adapter_c_s).to(input_ids.device)
for key, single_adapter_input in adapter_input.items():
projected_adapter_input = self.projection_mlps[key][i](single_adapter_input)
encoded_adapter_input += projected_adapter_input
#combine the inputs and pass through one more mlp
key = "combination"
summed_adapter_input = self.projection_mlps[key][i](summed_adapter_input)
encoded_adapter_input = (summed_adapter_input, )
#if you're not sharing an adapter (with or without multiple conditions)
else:
for key, value in adapter_input.items():
summed_adapter_input = self.projection_mlps[key][i](value)
encoded_adapter_input = encoded_adapter_input + (summed_adapter_input, )
encoded_adapter_input = torch.stack(encoded_adapter_input, dim=0)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
hidden_states, presents, self_attentions = self.model.transformer.forward_layer(
hidden_states=hidden_states,
layer_i=i,
layer_past=past_key_values[i] if past_key_values[i] is not None else None,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
adapter_layer=self.adapter_layers[i][0],
adapter_dropout=self.adapter_layers[i][1],
adapter_input=encoded_adapter_input,
)
if use_cache is True:
all_presents = all_presents + presents
if output_attentions:
all_self_attentions = all_self_attentions + (self_attentions, )
hidden_states = self.model.transformer.ln_f(hidden_states)
output_shape = input_shape + (hidden_states.size(-1), )
hidden_states = hidden_states.view(*output_shape)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
if not return_dict:
return tuple(v for v in [
hidden_states, all_presents, all_hidden_states,
all_self_attentions
] if v is not None)
transformer_outputs = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=all_presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
hidden_states = transformer_outputs[0]
# make sure sampling in fp16 works correctly and
# compute loss in fp32 to match with mesh-tf version
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
lm_logits = self.model.lm_head(hidden_states).to(torch.float32)
loss = None
all_losses = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
#added this so that the loss of each sample is outputted
loss_fct = CrossEntropyLoss(ignore_index=0, reduction='none')
all_losses = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1))
all_losses = all_losses.to(hidden_states.dtype)
#still output the mean reduced loss
loss_fct = CrossEntropyLoss(ignore_index=0)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1))
if not return_dict:
output = (lm_logits, ) + transformer_outputs[1:]
return ((loss, ) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
all_losses=all_losses,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)