BERT_ST_DA_1800 / README.md
judithrosell's picture
End of training
cb8f178 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: BERT_ST_DA_1800
    results: []

BERT_ST_DA_1800

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1918
  • Precision: 0.9710
  • Recall: 0.9712
  • F1: 0.9711
  • Accuracy: 0.9675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1075 1.0 1050 0.1338 0.9633 0.9650 0.9641 0.9616
0.0565 2.0 2100 0.1253 0.9661 0.9687 0.9674 0.9647
0.0358 3.0 3150 0.1386 0.9691 0.9703 0.9697 0.9666
0.0211 4.0 4200 0.1516 0.9701 0.9707 0.9704 0.9670
0.0118 5.0 5250 0.1586 0.9697 0.9726 0.9711 0.9676
0.0084 6.0 6300 0.1791 0.9685 0.9698 0.9691 0.9654
0.0054 7.0 7350 0.1849 0.9692 0.9692 0.9692 0.9657
0.0031 8.0 8400 0.1887 0.9690 0.9708 0.9699 0.9660
0.0023 9.0 9450 0.1931 0.9705 0.9703 0.9704 0.9669
0.0017 10.0 10500 0.1918 0.9710 0.9712 0.9711 0.9675

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1