ST_CEMS / README.md
judithrosell's picture
End of training
381440e verified
metadata
library_name: transformers
license: mit
base_model: m3rg-iitd/matscibert
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ST_CEMS
    results: []

ST_CEMS

This model is a fine-tuned version of m3rg-iitd/matscibert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0598
  • Precision: 0.9368
  • Recall: 0.9226
  • F1: 0.9296
  • Accuracy: 0.9898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0492 1.0 569 0.0347 0.9181 0.9091 0.9136 0.9881
0.0177 2.0 1138 0.0331 0.9406 0.9177 0.9290 0.9905
0.0109 3.0 1707 0.0454 0.9116 0.9122 0.9119 0.9876
0.0066 4.0 2276 0.0454 0.9596 0.8970 0.9272 0.9896
0.0042 5.0 2845 0.0477 0.9352 0.9061 0.9204 0.9889
0.0027 6.0 3414 0.0525 0.9352 0.9146 0.9248 0.9896
0.0018 7.0 3983 0.0498 0.9405 0.9159 0.9280 0.9899
0.0008 8.0 4552 0.0555 0.9312 0.9238 0.9275 0.9896
0.0007 9.0 5121 0.0602 0.9406 0.9165 0.9284 0.9897
0.0006 10.0 5690 0.0598 0.9368 0.9226 0.9296 0.9898

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1