|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: m3rg-iitd/matscibert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: ST_CEMS |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ST_CEMS |
|
|
|
This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0598 |
|
- Precision: 0.9368 |
|
- Recall: 0.9226 |
|
- F1: 0.9296 |
|
- Accuracy: 0.9898 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0492 | 1.0 | 569 | 0.0347 | 0.9181 | 0.9091 | 0.9136 | 0.9881 | |
|
| 0.0177 | 2.0 | 1138 | 0.0331 | 0.9406 | 0.9177 | 0.9290 | 0.9905 | |
|
| 0.0109 | 3.0 | 1707 | 0.0454 | 0.9116 | 0.9122 | 0.9119 | 0.9876 | |
|
| 0.0066 | 4.0 | 2276 | 0.0454 | 0.9596 | 0.8970 | 0.9272 | 0.9896 | |
|
| 0.0042 | 5.0 | 2845 | 0.0477 | 0.9352 | 0.9061 | 0.9204 | 0.9889 | |
|
| 0.0027 | 6.0 | 3414 | 0.0525 | 0.9352 | 0.9146 | 0.9248 | 0.9896 | |
|
| 0.0018 | 7.0 | 3983 | 0.0498 | 0.9405 | 0.9159 | 0.9280 | 0.9899 | |
|
| 0.0008 | 8.0 | 4552 | 0.0555 | 0.9312 | 0.9238 | 0.9275 | 0.9896 | |
|
| 0.0007 | 9.0 | 5121 | 0.0602 | 0.9406 | 0.9165 | 0.9284 | 0.9897 | |
|
| 0.0006 | 10.0 | 5690 | 0.0598 | 0.9368 | 0.9226 | 0.9296 | 0.9898 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|