|
from . import * |
|
from abcli import file |
|
from abcli import string |
|
import cv2 |
|
import numpy as np |
|
import os.path |
|
import abcli.logging |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def eval(input_path, output_path): |
|
from sklearn.metrics import accuracy_score |
|
|
|
report = {"accuracy": None} |
|
|
|
success, ground_truth = file.load(f"{input_path}/test_labels.pyndarray") |
|
if success: |
|
logger.info( |
|
"groundtruth: {} - {}".format( |
|
string.pretty_shape_of_matrix(ground_truth), |
|
",".join([str(value) for value in ground_truth[:10]] + ["..."]), |
|
) |
|
) |
|
success, predictions = file.load(f"{input_path}/predictions.pyndarray") |
|
|
|
if success: |
|
predictions = np.argmax(predictions, axis=1).astype(np.uint8) |
|
logger.info( |
|
"predictions: {} - {}".format( |
|
string.pretty_shape_of_matrix(predictions), |
|
",".join([str(value) for value in predictions[:10]] + ["..."]), |
|
) |
|
) |
|
|
|
report["accuracy"] = accuracy_score(predictions, ground_truth) |
|
|
|
logger.info( |
|
"image_classifier.eval({}->{}): {:.2f}%".format( |
|
input_path, output_path, 100 * report["accuracy"] |
|
) |
|
) |
|
|
|
return file.save_json(os.path.join(output_path, "evaluation_report.json"), report) |
|
|
|
|
|
def preprocess( |
|
output_path, |
|
objects="", |
|
infer_annotation=True, |
|
purpose="predict", |
|
test_size=1.0 / 6, |
|
window_size=28, |
|
): |
|
if objects: |
|
logger.info( |
|
"image_classifier.preprocess({}{})->{} - {}x{} - for {}".format( |
|
",".join(objects), |
|
" + annotation" if infer_annotation else "", |
|
output_path, |
|
window_size, |
|
window_size, |
|
purpose, |
|
) |
|
) |
|
|
|
annotations = [] |
|
list_of_images = [] |
|
for index, object in enumerate(objects): |
|
list_of_images_ = [ |
|
"{}/Data/{}/camera.jpg".format(object, frame) |
|
for frame in objects.list_of_frames(object) |
|
] |
|
|
|
annotations += len(list_of_images_) * [index] |
|
list_of_images += list_of_images_ |
|
|
|
annotations = np.array(annotations) if infer_annotation else [] |
|
else: |
|
logger.info( |
|
"image_classifier.preprocess({}) - {}x{} - for {}".format( |
|
output_path, |
|
window_size, |
|
window_size, |
|
purpose, |
|
) |
|
) |
|
|
|
list_of_images = [ |
|
"{}/Data/{}/camera.jpg".format(output_path, frame) |
|
for frame in objects.list_of_frames(output_path) |
|
] |
|
|
|
annotations = np.array( |
|
file.load_json( |
|
f"{output_path}/annotations.json".format(), |
|
civilized=True, |
|
default=None, |
|
)[1] |
|
).astype(np.uint8) |
|
|
|
if len(annotations) and len(list_of_images) != len(annotations): |
|
logger.error( |
|
f"-{name}: preprocess: mismatch between frame and annotation counts: {len(list_of_images):,g} != {len(annotations):,g}" |
|
) |
|
return False |
|
logger.info("{:,} frame(s)".format(len(list_of_images))) |
|
|
|
tensor = np.zeros( |
|
(len(list_of_images), window_size, window_size, 3), |
|
dtype=np.uint8, |
|
) |
|
|
|
error_count = 0 |
|
for index, filename in enumerate(list_of_images): |
|
logger.info("+= {}".format(filename)) |
|
success_, image = file.load_image(filename) |
|
if success_: |
|
try: |
|
tensor[index, :, :, :] = cv2.resize(image, (window_size, window_size)) |
|
except: |
|
from abcli.logging import crash_report |
|
|
|
crash_report("image_classifier.preprocess() failed") |
|
success_ = False |
|
|
|
if not success_: |
|
error_count += 1 |
|
logger.info( |
|
"tensor: {}{}".format( |
|
string.pretty_shape_of_matrix(tensor), |
|
" {} error(s)".format(error_count) if error_count else "", |
|
) |
|
) |
|
|
|
success = False |
|
if purpose == "predict": |
|
if not file.save("{}/test_images.pyndarray".format(output_path), tensor): |
|
return False |
|
if len(annotations): |
|
if not file.save( |
|
"{}/test_labels.pyndarray".format(output_path), annotations |
|
): |
|
return False |
|
success = True |
|
elif purpose == "train": |
|
if not len(annotations): |
|
logger.error(f"-{name}: preprocess: annotations are not provided.") |
|
return False |
|
|
|
from sklearn.model_selection import train_test_split |
|
|
|
( |
|
tensor_train, |
|
tensor_test, |
|
annotations_train, |
|
annotations_test, |
|
) = train_test_split(tensor, annotations, test_size=test_size) |
|
logger.info( |
|
"test-train split: {:.0f}%-{:.0f}% ".format( |
|
len(annotations_test) / len(annotations) * 100, |
|
len(annotations_train) / len(annotations) * 100, |
|
) |
|
) |
|
logger.info( |
|
"tensor_train: {}".format(string.pretty_shape_of_matrix(tensor_train)) |
|
) |
|
logger.info( |
|
"tensor_test: {}".format(string.pretty_shape_of_matrix(tensor_test)) |
|
) |
|
logger.info( |
|
"annotations_train: {}".format( |
|
string.pretty_shape_of_matrix(annotations_train) |
|
) |
|
) |
|
logger.info( |
|
"annotations_test: {}".format( |
|
string.pretty_shape_of_matrix(annotations_test) |
|
) |
|
) |
|
|
|
success = ( |
|
file.save("{}/train_images.pyndarray".format(output_path), tensor_train) |
|
and file.save("{}/test_images.pyndarray".format(output_path), tensor_test) |
|
and file.save( |
|
"{}/train_labels.pyndarray".format(output_path), annotations_train |
|
) |
|
and file.save( |
|
"{}/test_labels.pyndarray".format(output_path), annotations_test |
|
) |
|
) |
|
else: |
|
logger.error(f"-{name}: preprocess: {purpose}: purpose not found.") |
|
|
|
return success |
|
|