ketanmore's picture
Upload folder using huggingface_hub
2720487 verified
raw
history blame
3.89 kB
from typing import List
import cv2
import numpy as np
import math
import pypdfium2
from PIL import Image, ImageOps, ImageDraw
import torch
from surya.settings import settings
def convert_if_not_rgb(images: List[Image.Image]) -> List[Image.Image]:
new_images = []
for image in images:
if image.mode != "RGB":
image = image.convert("RGB")
new_images.append(image)
return new_images
def get_total_splits(image_size, processor):
img_height = list(image_size)[1]
max_height = settings.DETECTOR_IMAGE_CHUNK_HEIGHT
processor_height = processor.size["height"]
if img_height > max_height:
num_splits = math.ceil(img_height / processor_height)
return num_splits
return 1
def split_image(img, processor):
# This will not modify/return the original image - it will either crop, or copy the image
img_height = list(img.size)[1]
max_height = settings.DETECTOR_IMAGE_CHUNK_HEIGHT
processor_height = processor.size["height"]
if img_height > max_height:
num_splits = math.ceil(img_height / processor_height)
splits = []
split_heights = []
for i in range(num_splits):
top = i * processor_height
bottom = (i + 1) * processor_height
if bottom > img_height:
bottom = img_height
cropped = img.crop((0, top, img.size[0], bottom))
height = bottom - top
if height < processor_height:
cropped = ImageOps.pad(cropped, (img.size[0], processor_height), color=255, centering=(0, 0))
splits.append(cropped)
split_heights.append(height)
return splits, split_heights
return [img.copy()], [img_height]
def prepare_image_detection(img, processor):
new_size = (processor.size["width"], processor.size["height"])
# This double resize actually necessary for downstream accuracy
img.thumbnail(new_size, Image.Resampling.LANCZOS)
img = img.resize(new_size, Image.Resampling.LANCZOS) # Stretch smaller dimension to fit new size
img = np.asarray(img, dtype=np.uint8)
img = processor(img)["pixel_values"][0]
img = torch.from_numpy(img)
return img
def open_pdf(pdf_filepath):
return pypdfium2.PdfDocument(pdf_filepath)
def get_page_images(doc, indices: List, dpi=settings.IMAGE_DPI):
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=indices,
scale=dpi / 72,
)
images = list(renderer)
images = [image.convert("RGB") for image in images]
return images
def slice_bboxes_from_image(image: Image.Image, bboxes):
lines = []
for bbox in bboxes:
line = image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))
lines.append(line)
return lines
def slice_polys_from_image(image: Image.Image, polys):
image_array = np.array(image, dtype=np.uint8)
lines = []
for idx, poly in enumerate(polys):
lines.append(slice_and_pad_poly(image_array, poly))
return lines
def slice_and_pad_poly(image_array: np.array, coordinates):
# Draw polygon onto mask
coordinates = [(corner[0], corner[1]) for corner in coordinates]
bbox = [min([x[0] for x in coordinates]), min([x[1] for x in coordinates]), max([x[0] for x in coordinates]), max([x[1] for x in coordinates])]
# We mask out anything not in the polygon
cropped_polygon = image_array[bbox[1]:bbox[3], bbox[0]:bbox[2]].copy()
coordinates = [(x - bbox[0], y - bbox[1]) for x, y in coordinates]
# Pad the area outside the polygon with the pad value
mask = np.zeros(cropped_polygon.shape[:2], dtype=np.uint8)
cv2.fillPoly(mask, [np.int32(coordinates)], 1)
mask = np.stack([mask] * 3, axis=-1)
cropped_polygon[mask == 0] = settings.RECOGNITION_PAD_VALUE
rectangle_image = Image.fromarray(cropped_polygon)
return rectangle_image