ketanmore's picture
Upload folder using huggingface_hub
2720487 verified
raw
history blame
10.2 kB
from typing import List
import torch
from PIL import Image
from surya.input.processing import convert_if_not_rgb
from surya.postprocessing.math.latex import fix_math, contains_math
from surya.postprocessing.text import truncate_repetitions
from surya.settings import settings
from tqdm import tqdm
import numpy as np
import torch.nn.functional as F
def get_batch_size():
batch_size = settings.RECOGNITION_BATCH_SIZE
if batch_size is None:
batch_size = 32
if settings.TORCH_DEVICE_MODEL == "mps":
batch_size = 64 # 12GB RAM max
if settings.TORCH_DEVICE_MODEL == "cuda":
batch_size = 256
return batch_size
def batch_recognition(images: List, languages: List[List[str]], model, processor, batch_size=None):
import inspect
print("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&",inspect.getargspec(processor).args)
assert all([isinstance(image, Image.Image) for image in images])
assert len(images) == len(languages)
for l in languages:
assert len(l) <= settings.RECOGNITION_MAX_LANGS, f"OCR only supports up to {settings.RECOGNITION_MAX_LANGS} languages per image, you passed {l}."
images = [image.convert("RGB") for image in images] # also copies the images
if batch_size is None:
batch_size = get_batch_size()
output_text = []
confidences = []
dec_config = model.config.decoder
layer_count = dec_config.decoder_layers
kv_heads = dec_config.kv_heads
head_dim = int(dec_config.d_model / dec_config.decoder_attention_heads)
min_val = torch.finfo(model.dtype).min
if settings.RECOGNITION_STATIC_CACHE:
# We'll re-use these for all batches to avoid recopying
kv_mask = torch.full((batch_size, 1, 1, settings.RECOGNITION_MAX_TOKENS + 1), min_val, dtype=model.dtype, device=model.device)
# The +1 accounts for start token
initial_attn_mask = torch.full((batch_size, 1, settings.RECOGNITION_MAX_LANGS + 1, settings.RECOGNITION_MAX_LANGS + 1), min_val, dtype=model.dtype, device=model.device)
# Decoder kv cache
# 7 (layers) x 2 (kv) x bs x 4 (heads) x max tokens x 64 (head dim)
decoder_cache = [torch.zeros((2, batch_size, kv_heads, settings.RECOGNITION_MAX_TOKENS, head_dim), dtype=model.dtype, device=model.device) for _ in range(layer_count)]
# Prefill
decoder_input = torch.zeros((batch_size, settings.RECOGNITION_MAX_LANGS + 1), dtype=torch.long, device=model.device)
else:
initial_kv_mask = torch.zeros((batch_size, 1, 1, 1), dtype=model.dtype, device=model.device)
initial_attn_mask = torch.zeros((batch_size, 1, settings.RECOGNITION_MAX_LANGS + 1, settings.RECOGNITION_MAX_LANGS + 1), dtype=model.dtype, device=model.device)
processed_batches = processor(text=[""] * len(images), images=images, lang=languages)
for i in tqdm(range(0, len(images), batch_size), desc="Recognizing Text"):
batch_langs = languages[i:i+batch_size]
has_math = ["_math" in lang for lang in batch_langs]
batch_pixel_values = processed_batches["pixel_values"][i:i+batch_size]
batch_langs = processed_batches["langs"][i:i+batch_size]
max_lang_len = max([len(lang) for lang in batch_langs])
# Pad languages to max length if needed, to ensure we can convert to a tensor
for lang_idx in range(len(batch_langs)):
lang_len = len(batch_langs[lang_idx])
if lang_len < max_lang_len:
batch_langs[lang_idx] = [processor.tokenizer.pad_id] * (max_lang_len - lang_len) + batch_langs[lang_idx]
batch_decoder_input = [[model.config.decoder_start_token_id] + lang for lang in batch_langs]
current_batch_size = len(batch_pixel_values)
batch_langs = torch.tensor(np.stack(batch_langs, axis=0), dtype=torch.long, device=model.device)
batch_pixel_values = torch.tensor(np.stack(batch_pixel_values, axis=0), dtype=model.dtype, device=model.device)
batch_decoder_input = torch.tensor(np.stack(batch_decoder_input, axis=0), dtype=torch.long, device=model.device)
token_count = 0
inference_token_count = batch_decoder_input.shape[-1]
batch_predictions = [[] for _ in range(current_batch_size)]
decoder_input_pad = torch.zeros((batch_size - current_batch_size, 1), dtype=torch.long, device=model.device)
if settings.RECOGNITION_STATIC_CACHE:
# Reset shared tensors
if i > 0:
# Decoder cache
for layer_cache in decoder_cache:
layer_cache.fill_(0)
# KV mask
kv_mask.fill_(min_val)
kv_mask[:, :, :, -1] = 0
kv_mask[:, :, :, :inference_token_count] = 0
# Attention mask
initial_attn_mask.fill_(min_val)
# Prefill
decoder_input.fill_(0)
# Prefill attention mask
attention_mask = initial_attn_mask
attention_mask[:, :, -inference_token_count:, -inference_token_count:] = 0
# Prefill input
decoder_input[:current_batch_size, -inference_token_count:] = batch_decoder_input
batch_decoder_input = decoder_input
# Pad to max batch size
batch_langs = torch.cat([batch_langs, torch.zeros((batch_size - current_batch_size, batch_langs.shape[-1]), dtype=torch.long, device=model.device)], dim=0)
batch_pixel_values = torch.cat([batch_pixel_values, torch.zeros((batch_size - current_batch_size,) + batch_pixel_values.shape[1:], dtype=model.dtype, device=model.device)], dim=0)
else:
# Select seed attention mask
kv_mask = initial_kv_mask[:current_batch_size]
kv_mask.fill_(0)
# Select prefill attention mask
attention_mask = initial_attn_mask[:current_batch_size, :, :inference_token_count, :inference_token_count]
decoder_cache = [None] * layer_count
encoder_outputs = None
sequence_scores = None
encoder_cache = [None] * layer_count
all_done = torch.zeros(current_batch_size, dtype=torch.bool, device=model.device)
with torch.no_grad(): # inference_mode doesn't work with torch.compile
# Run post-prefill tokens
while token_count < settings.RECOGNITION_MAX_TOKENS:
is_prefill = token_count == 0
return_dict = model(
decoder_input_ids=batch_decoder_input,
decoder_attention_mask=attention_mask,
decoder_self_kv_cache=None if is_prefill else decoder_cache,
decoder_cross_kv_cache=None if is_prefill else encoder_cache,
decoder_past_token_count=token_count,
decoder_langs=batch_langs,
pixel_values=batch_pixel_values,
encoder_outputs=encoder_outputs,
return_dict=True,
)
logits = return_dict["logits"][:current_batch_size] # Ignore batch padding
preds = torch.argmax(logits[:, -1], dim=-1)
scores = torch.max(F.softmax(logits, dim=-1), dim=-1).values
done = (preds == processor.tokenizer.eos_id) | (preds == processor.tokenizer.pad_id)
done = done
all_done = all_done | done
scores[all_done == 1] = 0
if is_prefill:
sequence_scores = scores
encoder_outputs = (return_dict["encoder_last_hidden_state"],)
else:
sequence_scores = torch.cat([sequence_scores, scores], dim=1)
if all_done.all():
break
past_key_values = return_dict["past_key_values"]
token_range = torch.arange(token_count, token_count + inference_token_count, device=model.device)
for layer_idx, layer in enumerate(past_key_values):
if is_prefill:
encoder_cache[layer_idx] = layer[1]
if settings.RECOGNITION_STATIC_CACHE:
# Fill in entries in static kv cache
decoder_cache[layer_idx][:, :, :, token_range, :] = layer[0][:, :, :, -inference_token_count:, :]
else:
# Cat to generate new kv cache including current tokens
if is_prefill:
decoder_cache[layer_idx] = layer[0]
else:
decoder_cache[layer_idx] = torch.cat([decoder_cache[layer_idx], layer[0]], dim=3)
batch_decoder_input = preds.unsqueeze(1)
if settings.RECOGNITION_STATIC_CACHE:
# Setup new attention mask and input token
kv_mask[:, :, :, token_count:(token_count + inference_token_count)] = 0
batch_decoder_input = torch.cat([batch_decoder_input, decoder_input_pad], dim=0) # Pad to full batch
else:
kv_mask = torch.cat([kv_mask, torch.zeros((current_batch_size, 1, 1, inference_token_count), dtype=model.dtype, device=model.device)], dim=-1)
attention_mask = kv_mask
for j, (pred, status) in enumerate(zip(preds, all_done)):
if not status:
batch_predictions[j].append(int(pred))
token_count += inference_token_count
inference_token_count = batch_decoder_input.shape[-1]
sequence_scores = torch.sum(sequence_scores, dim=-1) / torch.sum(sequence_scores != 0, dim=-1)
detected_text = processor.tokenizer.batch_decode(batch_predictions)
detected_text = [truncate_repetitions(dt) for dt in detected_text]
# Postprocess to fix LaTeX output (add $$ signs, etc)
detected_text = [fix_math(text) if math and contains_math(text) else text for text, math in zip(detected_text, has_math)]
output_text.extend(detected_text)
confidences.extend(sequence_scores.tolist())
return output_text, confidences