ketanmore's picture
Upload folder using huggingface_hub
2720487 verified
raw
history blame
21.2 kB
import copy
from typing import Optional, List, Union, Tuple
from transformers import MBartForCausalLM, MBartConfig
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
from transformers.models.mbart.modeling_mbart import MBartPreTrainedModel, MBartDecoder
from .config import MBartMoEConfig
import torch
import math
class MBartLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# MBart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
"""`input_ids' shape is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
).expand(bsz, -1)
return super().forward(positions + self.offset)
class MBartExpertMLP(nn.Module):
def __init__(self, config: MBartConfig, is_lg=False, is_xl=False):
super().__init__()
self.ffn_dim = config.d_expert
if is_lg:
self.ffn_dim = config.d_expert_lg
if is_xl:
self.ffn_dim = config.d_expert_xl
self.hidden_dim = config.d_model
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.dropout = nn.Dropout(config.activation_dropout)
self.act_fn = ACT2FN[config.activation_function]
def forward(self, hidden_states):
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
class MBartExpertLayer(nn.Module):
# From mixtral, with modifications
def __init__(self, config):
super().__init__()
self.dropout = nn.Dropout(config.activation_dropout)
self.hidden_dim = config.d_model
self.lg_lang_codes = sorted(config.lg_langs.values()) if hasattr(config, "lg_langs") else []
self.xl_lang_codes = sorted(config.xl_langs.values()) if hasattr(config, "xl_langs") else []
self.lang_codes = sorted(config.langs.values())
self.num_experts = len(self.lang_codes)
self.experts = nn.ModuleDict({str(lang): MBartExpertMLP(config, is_lg=(lang in self.lg_lang_codes), is_xl=(lang in self.xl_lang_codes)) for lang in self.lang_codes})
def forward(self, hidden_states: torch.Tensor, langs: torch.LongTensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
final_hidden_states = torch.zeros(
(batch_size, sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# Weight experts based on how many languages in the input
routing_weights = 1 / ((langs > 3).sum(axis=-1))
# Set weights to 1 if zero experts activated
routing_weights[torch.isinf(routing_weights)] = 1
unique_langs = langs.unique(dim=None, sorted=True)
unique_langs = unique_langs[unique_langs > 3] # Remove start token
# Loop over all available experts in the model and perform the computation on each expert
for expert_lang in unique_langs:
# Check which samples match with this expert
lang_match = (langs == expert_lang).any(dim=-1)
idx = torch.nonzero(lang_match, as_tuple=True)[0]
if idx.shape[0] == 0:
continue
expert_layer = self.experts[str(expert_lang.item())]
current_state = hidden_states[idx]
current_hidden_states = expert_layer(current_state.view(-1, hidden_dim))
current_hidden_states = current_hidden_states.view(-1, sequence_length, hidden_dim)
# Weight by number of languages in the input
selected_routing_weights = routing_weights[idx].view(-1, 1, 1)
current_hidden_states *= selected_routing_weights
final_hidden_states.index_add_(0, idx, current_hidden_states)
return final_hidden_states
class MBartGQAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
num_kv_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[MBartConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.num_kv_groups = self.num_heads // self.num_kv_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, self.num_kv_heads * self.head_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, self.num_kv_heads * self.head_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _shape_key_value(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
is_prefill: Optional[bool] = False,
attention_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if is_cross_attention:
if is_prefill:
# cross_attentions
key_states = self._shape_key_value(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape_key_value(self.v_proj(key_value_states), -1, bsz)
past_key_value = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0)
else:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
past_key_value = None
# Self-attention
else:
if is_prefill:
# initial prompt
key_states = self._shape_key_value(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape_key_value(self.v_proj(hidden_states), -1, bsz)
past_key_value = torch.cat([key_states[:, :, -tgt_len:].unsqueeze(0), value_states[:, :, -tgt_len:].unsqueeze(0)], dim=0)
else:
# reuse k, v, self_attention
key_states = self._shape_key_value(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape_key_value(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = torch.cat([key_states[:, :, -tgt_len:].unsqueeze(0), value_states[:, :, -tgt_len:].unsqueeze(0)], dim=0)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
# Expand kv heads, then match query shape
key_states = key_states.repeat_interleave(self.num_kv_groups, dim=1).reshape(*proj_shape)
value_states = value_states.repeat_interleave(self.num_kv_groups, dim=1).reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if not is_cross_attention:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.bmm(attn_weights, value_states).view(bsz, self.num_heads, tgt_len, self.head_dim).transpose(1,2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, past_key_value
class MBartMoEDecoderLayer(nn.Module):
def __init__(self, config: MBartConfig, has_moe=False):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MBartGQAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
num_kv_heads=config.kv_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = MBartGQAttention(
self.embed_dim,
config.decoder_attention_heads,
num_kv_heads=config.kv_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.has_moe = has_moe
if has_moe:
self.moe = MBartExpertLayer(config)
else:
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.LongTensor] = None,
self_kv_cache: Optional[torch.Tensor] = None,
cross_kv_cache: Optional[torch.Tensor] = None,
is_prefill: Optional[bool] = False,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_kv_cache,
is_prefill=is_prefill,
attention_mask=attention_mask,
)
hidden_states = residual + hidden_states
# Cross-Attention Block
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
hidden_states, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
is_prefill=is_prefill,
attention_mask=encoder_attention_mask,
past_key_value=cross_kv_cache,
)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = (present_key_value, cross_attn_present_key_value)
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.has_moe:
hidden_states = self.moe(hidden_states, langs)
else:
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.fc2(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if use_cache:
outputs += (present_key_value,)
return outputs
class MBartMoEDecoder(MBartDecoder):
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
MBartPreTrainedModel.__init__(self, config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
# Language-specific MoE goes at second and second-to-last layer
self.layers = nn.ModuleList([MBartMoEDecoderLayer(config, has_moe=(i in config.moe_layers) and config.use_moe) for i in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
self_kv_cache: Optional[torch.Tensor] = None,
cross_kv_cache: Optional[torch.Tensor] = None,
past_token_count: Optional[int] = None,
langs: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
use_cache = True
return_dict = True
input = input_ids
input_shape = input.size()
input_ids = input_ids.view(-1, input_shape[-1])
# past_key_values_length
past_key_values_length = past_token_count if self_kv_cache is not None else 0
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
# decoder layers
all_hidden_states = None
all_self_attns = None
all_cross_attentions = None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
is_prefill = past_token_count == 0
layer_self_kv_cache = self_kv_cache[idx] if self_kv_cache is not None else None
layer_cross_kv_cache = cross_kv_cache[idx] if cross_kv_cache is not None else None
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
langs=langs,
self_kv_cache=layer_self_kv_cache,
cross_kv_cache=layer_cross_kv_cache,
is_prefill=is_prefill,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=None,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class MBartMoEDecoderWrapper(MBartPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = MBartMoEDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
class MBartMoE(MBartForCausalLM):
config_class = MBartMoEConfig
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config, **kwargs):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
MBartPreTrainedModel.__init__(self, config)
self.model = MBartMoEDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
self_kv_cache: Optional[torch.FloatTensor] = None,
cross_kv_cache: Optional[torch.FloatTensor] = None,
past_token_count: Optional[int] = None,
langs: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
self_kv_cache=self_kv_cache,
cross_kv_cache=cross_kv_cache,
past_token_count=past_token_count,
langs=langs,
encoder_hidden_states=encoder_hidden_states,
)
logits = self.lm_head(outputs[0])
if not return_dict:
output = (logits,) + outputs[1:]
return output
return CausalLMOutputWithCrossAttentions(
loss=None,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prune_moe_experts(self, keep_keys: List[int]):
# Remove experts not specified in keep_keys
str_keep_keys = [str(key) for key in keep_keys]
for layer in self.model.decoder.layers:
if not layer.has_moe:
continue
lang_keys = list(layer.moe.experts.keys())
for lang in lang_keys:
if lang not in str_keep_keys:
layer.moe.experts.pop(lang)
layer.lang_codes = keep_keys