kfkas's picture
Update README.md
4c18240
|
raw
history blame
1.85 kB
metadata
language:
  - ko
tags:
  - generated_from_keras_callback
model-index:
  - name: t5-large-korean-news-title-klue-ynat
    results: []

t5-large-korean-text-summary

์ด ๋ชจ๋ธ์€ lcw99 / t5-large-korean-text-summary์„ klue-ynat์œผ๋กœ ํ›ˆ๋ จ์‹œ์ผœ ๋งŒ๋“  ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. Input = ['IT๊ณผํ•™','๊ฒฝ์ œ','์‚ฌํšŒ','์ƒํ™œ๋ฌธํ™”','์„ธ๊ณ„','์Šคํฌ์ธ ','์ •์น˜'] OUTPUT = ๊ฐ label์— ๋งž๋Š” ๋‰ด์Šค ๊ธฐ์‚ฌ ์ œ๋ชฉ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_dir = "kfkas/t5-large-korean-news-title-klue-ynat"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)
model.to(device)

label_list = ['IT๊ณผํ•™','๊ฒฝ์ œ','์‚ฌํšŒ','์ƒํ™œ๋ฌธํ™”','์„ธ๊ณ„','์Šคํฌ์ธ ','์ •์น˜']
text = "๊ฒฝ์ œ"

inputs = tokenizer.encode(text, max_length=256, truncation=True, return_tensors="pt")
with torch.no_grad():
  output = model.generate(
    input_ids,
    do_sample=True, #์ƒ˜ํ”Œ๋ง ์ „๋žต ์‚ฌ์šฉ
    max_length=128, # ์ตœ๋Œ€ ๋””์ฝ”๋”ฉ ๊ธธ์ด๋Š” 50
    top_k=50, # ํ™•๋ฅ  ์ˆœ์œ„๊ฐ€ 50์œ„ ๋ฐ–์ธ ํ† ํฐ์€ ์ƒ˜ํ”Œ๋ง์—์„œ ์ œ์™ธ
    top_p=0.95, # ๋ˆ„์  ํ™•๋ฅ ์ด 95%์ธ ํ›„๋ณด์ง‘ํ•ฉ์—์„œ๋งŒ ์ƒ์„ฑ
)
decoded_output = tokenizer.decode(output, skip_special_tokens=True)[0]
print(predicted_title)#์ •๋ถ€ ๊ธฐ์—… ๊ณ ์šฉ์ฐฝ์ถœยท์„ฑ์žฅ ์ด‰์ง„ ์œ„ํ•œ ๊ฒฝ์ œ์ •์ฑ… ํ™•๋Œ€ ์ฃผ๋ชฉ

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: None
  • training_precision: float16

Training results

Framework versions

  • Transformers 4.22.1
  • TensorFlow 2.10.0
  • Datasets 2.5.1
  • Tokenizers 0.12.1