kghanlon's picture
Upload folder using huggingface_hub
b85e95f verified
|
raw
history blame
3.65 kB
metadata
license: mit
base_model: FacebookAI/roberta-large
tags:
  - generated_from_trainer
model-index:
  - name: non_green_as_train_contextroberta-large_20e
    results: []

non_green_as_train_contextroberta-large_20e

This model is a fine-tuned version of FacebookAI/roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3214
  • Val Accuracy: 0.9779
  • Val Precision: 0.6893
  • Val Recall: 0.7568
  • Val F1: 0.7215

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Val Accuracy Val Precision Val Recall Val F1
0.0601 1.0 7739 0.0767 0.9763 0.6646 0.7518 0.7055
0.0493 2.0 15478 0.0995 0.9785 0.7181 0.7094 0.7137
0.0305 3.0 23217 0.1216 0.9765 0.6670 0.7578 0.7095
0.0196 4.0 30956 0.1275 0.9786 0.7066 0.7437 0.7247
0.0161 5.0 38695 0.1521 0.9768 0.7164 0.6398 0.6759
0.0141 6.0 46434 0.1643 0.9785 0.7103 0.7275 0.7188
0.007 7.0 54173 0.1660 0.9769 0.6739 0.7528 0.7112
0.0052 8.0 61912 0.1855 0.9783 0.7036 0.7376 0.7202
0.0048 9.0 69651 0.1845 0.9781 0.7042 0.7255 0.7147
0.0031 10.0 77390 0.2165 0.9782 0.7225 0.6882 0.7049
0.0036 11.0 85129 0.2271 0.9783 0.7223 0.6902 0.7059
0.0029 12.0 92868 0.2345 0.9770 0.6887 0.7144 0.7013
0.0015 13.0 100607 0.2636 0.9781 0.7307 0.6680 0.6979
0.0045 14.0 108346 0.2493 0.9781 0.6846 0.7820 0.7301
0.0005 15.0 116085 0.2563 0.9774 0.6789 0.7639 0.7189
0.0007 16.0 123824 0.2856 0.9784 0.7193 0.7033 0.7112
0.0 17.0 131563 0.2809 0.9782 0.7136 0.7064 0.7099
0.0 18.0 139302 0.3033 0.9781 0.6957 0.7497 0.7217
0.0 19.0 147041 0.3207 0.9782 0.6909 0.7669 0.7269
0.0 20.0 154780 0.3214 0.9779 0.6893 0.7568 0.7215

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2