|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
widget: |
|
- source_sentence: '[*]CC[*]' |
|
sentences: |
|
- '[*]COC[*]' |
|
- '[*]CC(C)C[*]' |
|
license: creativeml-openrail-m |
|
datasets: |
|
- Open-Orca/OpenOrca |
|
metrics: |
|
- accuracy |
|
--- |
|
|
|
# kuelumbus/polyBERT |
|
|
|
This is polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics. polyBERT maps PSMILES strings to 600 dimensional dense fingerprints. The fingerprints numerically represent polymer chemical structures. Please see the license agreement in the LICENSE file. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
psmiles_strings = ["[*]CC[*]", "[*]COC[*]"] |
|
|
|
polyBERT = SentenceTransformer('kuelumbus/polyBERT') |
|
embeddings = polyBERT.encode(psmiles_strings) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
psmiles_strings = ["[*]CC[*]", "[*]COC[*]"] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('kuelumbus/polyBERT') |
|
polyBERT = AutoModel.from_pretrained('kuelumbus/polyBERT') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(psmiles_strings, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = polyBERT(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
fingerprints = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Fingerprints:") |
|
print(fingerprints) |
|
``` |
|
|
|
|
|
|
|
## Evaluation Results |
|
|
|
See https://github.com/Ramprasad-Group/polyBERT and paper on arXiv. |
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model |
|
(1): Pooling({'word_embedding_dimension': 600, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
Kuenneth, C., Ramprasad, R. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. Nat Commun 14, 4099 (2023). https://doi.org/10.1038/s41467-023-39868-6 |