metadata
license: cc-by-nc-nd-4.0
datasets:
- kwaikeg/KAgentInstruct
- kwaikeg/KAgentBench
language:
- en
- zh
pipeline_tag: text-generation
KwaiAgents (Github) is a series of Agent-related works open-sourced by the KwaiKEG from Kuaishou Technology. The open-sourced content includes:
- KAgentSys-Lite: An experimental Agent Loop implemented based on open-source search engines, browsers, time, calendar, weather, and other tools, which is only missing the memory mechanism and some search capabilities compared to the system in the paper.
- KAgentLMs: A series of large language models with Agent capabilities such as planning, reflection, and tool-use, acquired through the Meta-agent tuning proposed in the paper.
- KAgentInstruct: Fine-tuned data of instructions generated by the Meta-agent in the paper.
- KAgentBench: Over 3,000 human-edited, automated evaluation data for testing Agent capabilities, with evaluation dimensions including planning, tool-use, reflection, concluding, and profiling.
User Guide
Serving by Lamma.cpp (CPU)
llama-cpp-python offers a web server which aims to act as a drop-in replacement for the OpenAI API. This allows you to use llama.cpp compatible models with any OpenAI compatible client (language libraries, services, etc).
To install the server package and get started:
pip install llama-cpp-python[server]
python3 -m llama_cpp.server --model kagentlms_qwen_7b_mat_gguf/ggml-model-q4_0.gguf --chat_format chatml --port 8888
Finally, you can use the curl command to invoke the model same as the OpenAI calling format. Here's an example:
curl http://localhost:8888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{"messages": [{"role": "user", "content": "Who is Andy Lau"}]}'
Citation
@article{pan2023kwaiagents,
author = {Haojie Pan and
Zepeng Zhai and
Hao Yuan and
Yaojia Lv and
Ruiji Fu and
Ming Liu and
Zhongyuan Wang and
Bing Qin
},
title = {KwaiAgents: Generalized Information-seeking Agent System with Large Language Models},
journal = {CoRR},
volume = {abs/2312.04889},
year = {2023}
}