|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: kykim0/pythia-1b-tulu-v2-mix-nos |
|
tags: |
|
- trl |
|
- reward-trainer |
|
- generated_from_trainer |
|
datasets: |
|
- allenai/ultrafeedback_binarized_cleaned |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: pythia-1b-tulu-v2-mix-nos-rm |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: allenai/ultrafeedback_binarized_cleaned |
|
type: allenai/ultrafeedback_binarized_cleaned |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7457800511508952 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pythia-1b-tulu-v2-mix-nos-rm |
|
|
|
This model is a fine-tuned version of [kykim0/pythia-1b-tulu-v2-mix-nos](https://huggingface.co/kykim0/pythia-1b-tulu-v2-mix-nos) on the allenai/ultrafeedback_binarized_cleaned dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5227 |
|
- Accuracy: 0.7458 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.41e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.5749 | 0.0527 | 100 | 0.5849 | 0.6900 | |
|
| 0.5873 | 0.1055 | 200 | 0.5581 | 0.7100 | |
|
| 0.5599 | 0.1582 | 300 | 0.5470 | 0.7212 | |
|
| 0.5456 | 0.2109 | 400 | 0.5379 | 0.7258 | |
|
| 0.521 | 0.2637 | 500 | 0.5358 | 0.7294 | |
|
| 0.5361 | 0.3164 | 600 | 0.5363 | 0.7376 | |
|
| 0.5662 | 0.3691 | 700 | 0.5270 | 0.7412 | |
|
| 0.5301 | 0.4219 | 800 | 0.5268 | 0.7427 | |
|
| 0.5661 | 0.4746 | 900 | 0.5301 | 0.7381 | |
|
| 0.5608 | 0.5274 | 1000 | 0.5242 | 0.7437 | |
|
| 0.5223 | 0.5801 | 1100 | 0.5242 | 0.7422 | |
|
| 0.5322 | 0.6328 | 1200 | 0.5249 | 0.7448 | |
|
| 0.4891 | 0.6856 | 1300 | 0.5241 | 0.7427 | |
|
| 0.5111 | 0.7383 | 1400 | 0.5234 | 0.7437 | |
|
| 0.5145 | 0.7910 | 1500 | 0.5225 | 0.7422 | |
|
| 0.4746 | 0.8438 | 1600 | 0.5226 | 0.7458 | |
|
| 0.5551 | 0.8965 | 1700 | 0.5223 | 0.7448 | |
|
| 0.563 | 0.9492 | 1800 | 0.5222 | 0.7453 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.19.1 |
|
|