deberta-v3-base_on5 / README.md
lambdavi's picture
End of training
addbac2
|
raw
history blame
1.84 kB
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
datasets:
  - ontonotes5
model-index:
  - name: deberta-v3-base_on5
    results: []

deberta-v3-base_on5

This model is a fine-tuned version of microsoft/deberta-v3-base on the ontonotes5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0598
  • F1-type-match: 0.6780
  • F1-partial: 0.6872
  • F1-strict: 0.6565
  • F1-exact: 0.6729

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1-type-match F1-partial F1-strict F1-exact
0.0738 1.0 936 0.0624 0.5568 0.5632 0.5322 0.5479
0.0432 2.0 1873 0.0591 0.5773 0.5848 0.5559 0.5709
0.0289 3.0 2808 0.0598 0.6780 0.6872 0.6565 0.6729

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0