lambdavi's picture
Update the code snippets slightly (#2)
b5e4a48
---
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
widget:
- text: Atlanta Games silver medal winner Edwards has called on other leading athletes
to take part in the Sarajevo meeting--a goodwill gesture towards Bosnia as it
recovers from the war in the Balkans--two days after the grand prix final in Milan.
- text: Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting
83), Hampshire 232 and 109-5.
- text: Poland's Foreign Minister Dariusz Rosati will visit Yugoslavia on September
3 and 4 to revive a dialogue between the two governments which was effectively
frozen in 1992,PAP news agency reported on Friday.
- text: The authorities are apparently extremely afraid of any political and social
discontent," said Xiao,in Manila to attend an Amnesty International conference
on human rights in China.
- text: American Nate Miller successfully defended his WBA cruiserweight title when
he knocked out compatriot James Heath in the seventh round of their bout on Saturday.
pipeline_tag: token-classification
model-index:
- name: SpanMarker
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Unknown
type: conll2003
split: eval
metrics:
- type: f1
value: 0.9550004205568171
name: F1
- type: precision
value: 0.9542780299209951
name: Precision
- type: recall
value: 0.9557239057239058
name: Recall
---
# SpanMarker
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2003](https://huggingface.co/datasets/conll2003) dataset that can be used for Named Entity Recognition.
## Model Details
Important Note: I used the Tokenizer from "roberta-base".
```diff
from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
+tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
+model.set_tokenizer(tokenizer)
# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")
```
### Model Description
- **Model Type:** SpanMarker
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [conll2003](https://huggingface.co/datasets/conll2003)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------|
| LOC | "Germany", "BRUSSELS", "Britain" |
| MISC | "German", "British", "EU-wide" |
| ORG | "European Commission", "EU", "European Union" |
| PER | "Werner Zwingmann", "Nikolaus van der Pas", "Peter Blackburn" |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
model.set_tokenizer(tokenizer)
# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 14.5019 | 113 |
| Entities per sentence | 0 | 1.6736 | 20 |
### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:-----:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 1.0 | 883 | 0.0123 | 0.9293 | 0.9274 | 0.9284 | 0.9848 |
| 2.0 | 1766 | 0.0089 | 0.9412 | 0.9456 | 0.9434 | 0.9882 |
| 3.0 | 2649 | 0.0077 | 0.9499 | 0.9505 | 0.9502 | 0.9893 |
| 4.0 | 3532 | 0.0070 | 0.9527 | 0.9537 | 0.9532 | 0.9900 |
| 5.0 | 4415 | 0.0068 | 0.9543 | 0.9557 | 0.9550 | 0.9902 |
### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.36.0
- PyTorch: 2.0.0
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->