ldos's picture
End of training
01ad819
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: text_shortening_model_v18
    results: []

text_shortening_model_v18

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7863
  • Rouge1: 0.6984
  • Rouge2: 0.3313
  • Rougel: 0.4652
  • Rougelsum: 0.6832
  • Bert precision: 0.8799
  • Bert recall: 0.8838
  • Average word count: 1610.0
  • Max word count: 1610
  • Min word count: 1610
  • Average token count: 16.8143
  • % shortened texts with length > 12: 100.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.195 1.0 62 1.7863 0.6984 0.3313 0.4652 0.6832 0.8799 0.8838 1610.0 1610 1610 16.8143 100.0

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3