|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: SmolLM-Ora |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: /media/renfroe/llms/SmolLM-360M/ |
|
|
|
model_type: LlamaForCausalLM |
|
tokenizer_type: GPT2Tokenizer |
|
seed: 122887 |
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
max_steps: 0 |
|
resume_from_checkpoint: |
|
datasets: |
|
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/Dynamic_Optimization_Methods_with_Applications_sqa_answers_only.json |
|
type: |
|
field_instruction: question |
|
field_output: answer |
|
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n" |
|
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n" |
|
- path: /home/renfroe/Dev/tinyllama-models/dataset/open_hermes_top_tech.json |
|
type: sharegpt |
|
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/hermes_prior_knowledge_question_expansion_with_answers.json |
|
type: |
|
field_instruction: question |
|
field_output: answer |
|
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n" |
|
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n" |
|
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/hermes_prior_knowledge_question_expansion_with_answers.json |
|
type: |
|
field_instruction: question |
|
field_output: answer |
|
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n" |
|
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n" |
|
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/or-farm_sharegpt.json |
|
type: sharegpt |
|
|
|
|
|
|
|
dataset_prepared_path: |
|
val_set_size: 0.2 |
|
output_dir: ./SmolLM-Ora |
|
auto_resume_from_checkpoints: false |
|
|
|
sequence_len: 2048 |
|
sample_packing: true |
|
chat_template: chatml |
|
|
|
wandb_project: SmolLM-Ora |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 10 |
|
num_epochs: 4 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: linear |
|
weight_decay: 0.0000001 |
|
learning_rate: 0.0001 |
|
lr_scheduler_kwargs: |
|
# num_cycles: 3 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
eval_sample_packing: False |
|
|
|
warmup_steps: 50 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
saves_per_epoch: 4 |
|
debug: |
|
deepspeed: |
|
|
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<|endoftext|>" |
|
eos_token: "<|endoftext|>" |
|
pad_token: "<|endoftext|>" |
|
``` |
|
|
|
</details><br> |
|
|
|
# SmolLM-Ora |
|
|
|
This model was trained from scratch on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8298 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 122887 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.0131 | 0.01 | 1 | 1.0419 | |
|
| 0.9727 | 0.25 | 27 | 0.9962 | |
|
| 0.953 | 0.5 | 54 | 0.9076 | |
|
| 0.8494 | 0.75 | 81 | 0.8792 | |
|
| 0.9297 | 1.0 | 108 | 0.8632 | |
|
| 0.8801 | 1.22 | 135 | 0.8527 | |
|
| 0.8133 | 1.47 | 162 | 0.8459 | |
|
| 0.8342 | 1.72 | 189 | 0.8410 | |
|
| 0.8973 | 1.97 | 216 | 0.8376 | |
|
| 0.7731 | 2.19 | 243 | 0.8350 | |
|
| 0.8207 | 2.44 | 270 | 0.8332 | |
|
| 0.7963 | 2.69 | 297 | 0.8318 | |
|
| 0.81 | 2.94 | 324 | 0.8309 | |
|
| 0.8351 | 3.18 | 351 | 0.8302 | |
|
| 0.8104 | 3.43 | 378 | 0.8299 | |
|
| 0.9019 | 3.68 | 405 | 0.8298 | |
|
| 0.7828 | 3.93 | 432 | 0.8298 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.0 |
|
|