π0 fast

π₀-FAST is a Vision-Language-Action model for general robot control that uses autoregressive next-token prediction to model continuous robot actions.

It was proposed in FAST: Efficient Action Tokenization for Vision-Language-Action Models.

How to Get Started

pip install "lerobot[pi]@git+https://github.com/huggingface/lerobot.git"
import torch
from lerobot.policies.factory import make_pre_post_processors
import numpy as np
from lerobot.policies.pi0_fast.modeling_pi0_fast import PI0FastPolicy

model_id = "lerobot/pi0fast-base"
model = PI0FastPolicy.from_pretrained(model_id)

# select your device here
device = torch.device("cuda")
preprocess, postprocess = make_pre_post_processors(
    model.config,
    model_id,
    preprocessor_overrides={"device_processor": {"device": str(device)}},
)

IMAGE_HEIGHT = 224
IMAGE_WIDTH = 224
batch_size = 1
prompt = "Pick up the red block and place it in the bin"

# Create random RGB images in [0, 255] uint8 range (as PIL images would be)
# Then convert to [0, 1] float32 range for LeRobot
def fake_rgb(h, w):
    arr = np.random.randint(0, 255, (h, w, 3), dtype=np.uint8)
    t = torch.from_numpy(arr).permute(2, 0, 1)  # CHW
    return t

DUMMY_STATE_DIM = 7
batch = {
    f"observation.images.base_0_rgb": torch.stack(
        [fake_rgb(IMAGE_HEIGHT, IMAGE_WIDTH) for _ in range(batch_size)]
    ).to(device),
    f"observation.images.left_wrist_0_rgb": torch.stack(
        [fake_rgb(IMAGE_HEIGHT, IMAGE_WIDTH) for _ in range(batch_size)]
    ).to(device),
    f"observation.images.right_wrist_0_rgb": torch.stack(
        [fake_rgb(IMAGE_HEIGHT, IMAGE_WIDTH) for _ in range(batch_size)]
    ).to(device),
    "observation.state": torch.randn(batch_size, DUMMY_STATE_DIM, dtype=torch.float32, device=device),
    "task": [prompt for _ in range(batch_size)],
}

batch = preprocess(batch)
action = model.select_action(batch)
# or if you're training, do:
# loss, output_dict = policy.forward(batch)
# loss.backward()
action = postprocess(action)
print(action)

How to Train the Model

python src/lerobot/scripts/lerobot_train.py \
    --dataset.repo_id=your_dataset \
    --policy.type=pi0_fast \
    --output_dir=./outputs/pi0fast_training \
    --job_name=pi0fast_training \
    --policy.pretrained_path=lerobot/pi0fast-base \
    --policy.dtype=bfloat16 \
    --policy.gradient_checkpointing=true \
    --policy.chunk_size=10 \
    --policy.n_action_steps=10 \
    --policy.max_action_tokens=256 \
    --steps=100000 \
    --batch_size=4 \
    --policy.device=cuda
Downloads last month
92
Video Preview
loading

Model tree for lerobot/pi0fast-base

Finetunes
2 models

Collection including lerobot/pi0fast-base

Paper for lerobot/pi0fast-base