|
--- |
|
tags: autotrain |
|
language: en |
|
widget: |
|
- text: "I love AutoTrain 🤗" |
|
datasets: |
|
- lewtun/autotrain-data-my-eval-project-615 |
|
co2_eq_emissions: 172.04481351504182 |
|
model-index: |
|
- name: bhadresh-savani/distilbert-base-uncased-emotion |
|
results: |
|
- task: |
|
name: Multi-class Classification |
|
type: text-classification |
|
dataset: |
|
type: emotion |
|
name: Emotion |
|
config: default |
|
split: test |
|
metrics: |
|
- name: Loss |
|
type: loss |
|
value: 0.17404702305793762 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.927 |
|
- name: Macro F1 |
|
type: macro_f1 |
|
value: 0.8825061528287809 |
|
- name: Recall |
|
type: micro_f1 |
|
value: 0.927 |
|
- name: Weighted F1 |
|
type: weighted_f1 |
|
value: 0.926876082854655 |
|
- name: Macro Precision |
|
type: macro_precision |
|
value: 0.8880230732280744 |
|
- name: Micro Precision |
|
type: micro_precision |
|
value: 0.927 |
|
- name: Weighted Precision |
|
type: weighted_precision |
|
value: 0.9272902840835793 |
|
- name: Macro Recall |
|
type: macro_recall |
|
value: 0.8790126653780703 |
|
- name: Micro Recall |
|
type: micro_recall |
|
value: 0.927 |
|
- name: Weighted Recall |
|
type: weighted_recall |
|
value: 0.927 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 5694363 |
|
- CO2 Emissions (in grams): 172.04481351504182 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.2228243350982666 |
|
- Accuracy: 0.9298 |
|
- Precision: 0.9434585224927775 |
|
- Recall: 0.9144 |
|
- AUC: 0.9566112000000001 |
|
- F1: 0.9287020109689214 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lewtun/autotrain-my-eval-project-615-5694363 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("lewtun/autotrain-my-eval-project-615-5694363", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("lewtun/autotrain-my-eval-project-615-5694363", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |