mamiksik's picture
update model card README.md
d3ff883
|
raw
history blame
3.43 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: CodeBERTa-commit-message-autocomplete
    results: []

CodeBERTa-commit-message-autocomplete

This model is a fine-tuned version of microsoft/codebert-base-mlm on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8796
  • Accuracy: 0.6381

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 4.5229 0.3460
No log 2.0 80 3.8419 0.3792
No log 3.0 120 3.1830 0.4538
No log 4.0 160 2.8435 0.5
No log 5.0 200 2.6741 0.5126
No log 6.0 240 2.6468 0.5211
No log 7.0 280 2.4902 0.5431
No log 8.0 320 2.4223 0.5590
No log 9.0 360 2.3677 0.5625
No log 10.0 400 2.3634 0.5654
No log 11.0 440 2.3334 0.5693
No log 12.0 480 2.1738 0.5963
3.0595 13.0 520 2.2148 0.5882
3.0595 14.0 560 2.2387 0.5878
3.0595 15.0 600 2.1472 0.5938
3.0595 16.0 640 2.1703 0.5963
3.0595 17.0 680 2.1183 0.5937
3.0595 18.0 720 2.1139 0.6035
3.0595 19.0 760 2.0543 0.6106
3.0595 20.0 800 2.0135 0.6148
3.0595 21.0 840 2.0445 0.6119
3.0595 22.0 880 1.9723 0.6221
3.0595 23.0 920 1.9972 0.6205
3.0595 24.0 960 1.9588 0.6280
2.1206 25.0 1000 1.9563 0.6280
2.1206 26.0 1040 1.9421 0.6254
2.1206 27.0 1080 1.9820 0.6291
2.1206 28.0 1120 1.8989 0.6315
2.1206 29.0 1160 1.8743 0.6330
2.1206 30.0 1200 1.8840 0.6389
2.1206 31.0 1240 1.9038 0.6325
2.1206 32.0 1280 1.8796 0.6381

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2