metadata
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: CodeBertaCLM
results: []
CodeBertaCLM
This model is a fine-tuned version of microsoft/codebert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0401
- Accuracy: 0.0151
- F1: 0.0151
- Bleu4: 0.0545
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bleu4 |
---|---|---|---|---|---|---|
2.7267 | 1.0 | 1373 | 1.5727 | 0.0161 | 0.0161 | 0.0423 |
1.4983 | 2.0 | 2746 | 1.2421 | 0.0170 | 0.0170 | 0.0674 |
1.2858 | 3.0 | 4119 | 1.1225 | 0.0154 | 0.0154 | 0.0434 |
1.2268 | 4.0 | 5492 | 1.0612 | 0.0153 | 0.0153 | 0.0646 |
1.1658 | 5.0 | 6865 | 1.0401 | 0.0151 | 0.0151 | 0.0545 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2