metadata
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: CommitPredictor
results: []
CommitPredictor
This model is a fine-tuned version of microsoft/codebert-base-mlm on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6621
- Accuracy: 0.6851
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 42
- eval_batch_size: 42
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 126
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 299 | 2.2298 | 0.5874 |
2.5371 | 2.0 | 598 | 2.1358 | 0.6110 |
2.5371 | 3.0 | 897 | 2.0865 | 0.6056 |
2.1935 | 4.0 | 1196 | 2.0596 | 0.6179 |
2.1935 | 5.0 | 1495 | 1.9902 | 0.6305 |
2.0549 | 6.0 | 1794 | 1.9647 | 0.6274 |
1.9558 | 7.0 | 2093 | 1.9462 | 0.6290 |
1.9558 | 8.0 | 2392 | 1.9443 | 0.6261 |
1.8732 | 9.0 | 2691 | 1.9241 | 0.6317 |
1.8732 | 10.0 | 2990 | 1.8810 | 0.6461 |
1.798 | 11.0 | 3289 | 1.8232 | 0.6434 |
1.7427 | 12.0 | 3588 | 1.8621 | 0.6452 |
1.7427 | 13.0 | 3887 | 1.7853 | 0.6596 |
1.7124 | 14.0 | 4186 | 1.8741 | 0.6451 |
1.7124 | 15.0 | 4485 | 1.7989 | 0.6536 |
1.6683 | 16.0 | 4784 | 1.7783 | 0.6582 |
1.59 | 17.0 | 5083 | 1.7738 | 0.6642 |
1.59 | 18.0 | 5382 | 1.8241 | 0.6534 |
1.5773 | 19.0 | 5681 | 1.8739 | 0.6547 |
1.5773 | 20.0 | 5980 | 1.7439 | 0.6695 |
1.532 | 21.0 | 6279 | 1.7081 | 0.6705 |
1.4875 | 22.0 | 6578 | 1.7486 | 0.6662 |
1.4875 | 23.0 | 6877 | 1.7568 | 0.6656 |
1.466 | 24.0 | 7176 | 1.8062 | 0.6658 |
1.466 | 25.0 | 7475 | 1.7666 | 0.6704 |
1.448 | 26.0 | 7774 | 1.7219 | 0.6670 |
1.4121 | 27.0 | 8073 | 1.6704 | 0.6745 |
1.4121 | 28.0 | 8372 | 1.6966 | 0.6719 |
1.3984 | 29.0 | 8671 | 1.6789 | 0.6825 |
1.3984 | 30.0 | 8970 | 1.7001 | 0.6797 |
1.3586 | 31.0 | 9269 | 1.7262 | 0.6712 |
1.3433 | 32.0 | 9568 | 1.7446 | 0.6744 |
1.3433 | 33.0 | 9867 | 1.6961 | 0.6752 |
1.3366 | 34.0 | 10166 | 1.7180 | 0.6729 |
1.3366 | 35.0 | 10465 | 1.6608 | 0.6773 |
1.3227 | 36.0 | 10764 | 1.6820 | 0.6814 |
1.3025 | 37.0 | 11063 | 1.7324 | 0.6727 |
1.3025 | 38.0 | 11362 | 1.6705 | 0.6882 |
1.2933 | 39.0 | 11661 | 1.6891 | 0.6742 |
1.2933 | 40.0 | 11960 | 1.6533 | 0.6797 |
1.2826 | 41.0 | 12259 | 1.6851 | 0.6770 |
1.2784 | 42.0 | 12558 | 1.7140 | 0.6806 |
1.2784 | 43.0 | 12857 | 1.6869 | 0.6769 |
1.2703 | 44.0 | 13156 | 1.7068 | 0.6730 |
1.2703 | 45.0 | 13455 | 1.7376 | 0.6681 |
1.2492 | 46.0 | 13754 | 1.6944 | 0.6751 |
1.2619 | 47.0 | 14053 | 1.8112 | 0.6644 |
1.2619 | 48.0 | 14352 | 1.7553 | 0.6721 |
1.2465 | 49.0 | 14651 | 1.7040 | 0.6713 |
1.2465 | 50.0 | 14950 | 1.6621 | 0.6851 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2