CommitPredictor / README.md
mamiksik's picture
update model card README.md
212d36c
|
raw
history blame
4.52 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: CommitPredictor
    results: []

CommitPredictor

This model is a fine-tuned version of microsoft/codebert-base-mlm on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6621
  • Accuracy: 0.6851

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 42
  • eval_batch_size: 42
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 126
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 299 2.2298 0.5874
2.5371 2.0 598 2.1358 0.6110
2.5371 3.0 897 2.0865 0.6056
2.1935 4.0 1196 2.0596 0.6179
2.1935 5.0 1495 1.9902 0.6305
2.0549 6.0 1794 1.9647 0.6274
1.9558 7.0 2093 1.9462 0.6290
1.9558 8.0 2392 1.9443 0.6261
1.8732 9.0 2691 1.9241 0.6317
1.8732 10.0 2990 1.8810 0.6461
1.798 11.0 3289 1.8232 0.6434
1.7427 12.0 3588 1.8621 0.6452
1.7427 13.0 3887 1.7853 0.6596
1.7124 14.0 4186 1.8741 0.6451
1.7124 15.0 4485 1.7989 0.6536
1.6683 16.0 4784 1.7783 0.6582
1.59 17.0 5083 1.7738 0.6642
1.59 18.0 5382 1.8241 0.6534
1.5773 19.0 5681 1.8739 0.6547
1.5773 20.0 5980 1.7439 0.6695
1.532 21.0 6279 1.7081 0.6705
1.4875 22.0 6578 1.7486 0.6662
1.4875 23.0 6877 1.7568 0.6656
1.466 24.0 7176 1.8062 0.6658
1.466 25.0 7475 1.7666 0.6704
1.448 26.0 7774 1.7219 0.6670
1.4121 27.0 8073 1.6704 0.6745
1.4121 28.0 8372 1.6966 0.6719
1.3984 29.0 8671 1.6789 0.6825
1.3984 30.0 8970 1.7001 0.6797
1.3586 31.0 9269 1.7262 0.6712
1.3433 32.0 9568 1.7446 0.6744
1.3433 33.0 9867 1.6961 0.6752
1.3366 34.0 10166 1.7180 0.6729
1.3366 35.0 10465 1.6608 0.6773
1.3227 36.0 10764 1.6820 0.6814
1.3025 37.0 11063 1.7324 0.6727
1.3025 38.0 11362 1.6705 0.6882
1.2933 39.0 11661 1.6891 0.6742
1.2933 40.0 11960 1.6533 0.6797
1.2826 41.0 12259 1.6851 0.6770
1.2784 42.0 12558 1.7140 0.6806
1.2784 43.0 12857 1.6869 0.6769
1.2703 44.0 13156 1.7068 0.6730
1.2703 45.0 13455 1.7376 0.6681
1.2492 46.0 13754 1.6944 0.6751
1.2619 47.0 14053 1.8112 0.6644
1.2619 48.0 14352 1.7553 0.6721
1.2465 49.0 14651 1.7040 0.6713
1.2465 50.0 14950 1.6621 0.6851

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2