CommitPredictorT5 / README.md
mamiksik's picture
update model card README.md
f452055
|
raw
history blame
3.68 kB
metadata
license: bsd-3-clause
tags:
  - generated_from_trainer
metrics:
  - rouge
  - bleu
model-index:
  - name: CommitPredictorT5
    results: []

CommitPredictorT5

This model is a fine-tuned version of Salesforce/codet5-base-multi-sum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7376
  • Rouge1: 0.3735
  • Rouge2: 0.1504
  • Rougel: 0.3701
  • Rougelsum: 0.3697
  • Gen Len: 19.1365
  • Bleu: 0.1453

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Bleu
3.2138 1.0 687 2.6919 0.3246 0.0964 0.3216 0.3218 9.125 0.0937
2.7517 2.0 1374 2.5546 0.3394 0.1042 0.3364 0.3362 8.9803 0.1066
2.4305 3.0 2061 2.4836 0.3523 0.1136 0.3496 0.3496 9.2049 0.1123
2.2956 4.0 2748 2.4483 0.3658 0.126 0.3633 0.3633 9.525 0.1146
2.1888 5.0 3435 2.4312 0.3665 0.1332 0.3636 0.3634 10.0631 0.1253
2.0056 6.0 4122 2.4251 0.3674 0.1352 0.3646 0.3644 9.8365 0.1240
1.9128 7.0 4809 2.4289 0.3725 0.1431 0.3694 0.3694 9.8713 0.1295
1.8487 8.0 5496 2.4625 0.3683 0.1377 0.3657 0.3659 10.0947 0.1291
1.6726 9.0 6183 2.4643 0.3725 0.1449 0.3702 0.3697 13.1967 0.1325
1.6292 10.0 6870 2.4716 0.3688 0.1438 0.3664 0.3661 13.7656 0.1307
1.5025 11.0 7557 2.4974 0.3762 0.1494 0.3732 0.3732 14.0988 0.1391
1.4224 12.0 8244 2.5273 0.3723 0.1489 0.3692 0.3688 12.084 0.1388
1.3912 13.0 8931 2.5460 0.375 0.1499 0.3722 0.3723 13.9529 0.1399
1.2766 14.0 9618 2.5771 0.3698 0.1453 0.3668 0.3667 12.5102 0.1386
1.2188 15.0 10305 2.6005 0.3789 0.1493 0.3763 0.376 16.0545 0.1423
1.1779 16.0 10992 2.6296 0.3757 0.1497 0.3729 0.3723 14.7201 0.1423
1.0739 17.0 11679 2.6512 0.3749 0.1522 0.3717 0.3715 16.0008 0.1468
1.0408 18.0 12366 2.6792 0.3758 0.1494 0.3735 0.3733 18.4971 0.1465
0.9567 19.0 13053 2.7153 0.3695 0.144 0.3669 0.3667 16.2357 0.1435
0.9072 20.0 13740 2.7376 0.3735 0.1504 0.3701 0.3697 19.1365 0.1453

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2