metadata
base_model: manuel-couto-pintos/roberta_erisk
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:50881
- loss:TripletLoss
widget:
- source_sentence: >-
I smoked weed for the first time ever a couple days ago, how long until
it's out of my system?
sentences:
- >-
If I haven't smoked weed in a long time and smoked 1 day, how long will
it be in my urine?
- Where can we find best delay pedal?
- How long does it take for an avid weed smoker to pass a urine drug test?
- source_sentence: What are the visiting places in coorg?
sentences:
- How can I find a co-working space in Gurgaon?
- What are the places to visit in coorg?
- What are your favourite celebrity cookbooks?
- source_sentence: What is the best used car to get under 5k?
sentences:
- What's the best used car for under 5k?
- What do you think about RBI's new move of banning 500 and 1000 notes?
- Which is the best car to buy under 6 lakhs?
- source_sentence: Which exercises can I do at home to reduce belly fat?
sentences:
- What exercise we can do to reduce belly fat at home?
- What is a first time home buyer?
- >-
My upper body is in shape but my thighs are very fatty and big ...so how
can I reduce my thighs .I am doing running of 3km daily only?
- source_sentence: Which is the best affiliate program?
sentences:
- How can I learn to make good coffee at home?
- What are the best affiliate networks in the UK?
- What are the best affiliate programs?
SentenceTransformer based on manuel-couto-pintos/roberta_erisk
This is a sentence-transformers model finetuned from manuel-couto-pintos/roberta_erisk. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: manuel-couto-pintos/roberta_erisk
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("manuel-couto-pintos/roberta_erisk_sts")
# Run inference
sentences = [
'Which is the best affiliate program?',
'What are the best affiliate programs?',
'What are the best affiliate networks in the UK?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 50,881 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 6 tokens
- mean: 13.77 tokens
- max: 42 tokens
- min: 6 tokens
- mean: 13.82 tokens
- max: 57 tokens
- min: 6 tokens
- mean: 14.96 tokens
- max: 59 tokens
- Samples:
sentence_0 sentence_1 sentence_2 What is a good definition of Quora?
What is the best definition of Quora?
What is Quora address?
How can I make myself appear offline on facebook?
How do you make sure to appear as offline on Facebook?
How can I get Facebook to remember to keep chat offline?
How do I gain some healthy weight?
What is the best way for underweight to gain weight?
My boyfriend doesn't eat a lot. What are some ways to help him gain weight fast? He's 5'7 120lbs
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0983 | 500 | 4.3807 |
0.1965 | 1000 | 2.5872 |
0.2948 | 1500 | 1.7484 |
0.3930 | 2000 | 1.2649 |
0.4913 | 2500 | 1.0219 |
0.5895 | 3000 | 0.8703 |
0.6878 | 3500 | 0.771 |
0.7860 | 4000 | 0.655 |
0.8843 | 4500 | 0.6547 |
0.9825 | 5000 | 0.5772 |
1.0808 | 5500 | 0.5628 |
1.1790 | 6000 | 0.5163 |
1.2773 | 6500 | 0.4871 |
1.3755 | 7000 | 0.4842 |
1.4738 | 7500 | 0.4316 |
1.5720 | 8000 | 0.4199 |
1.6703 | 8500 | 0.3554 |
1.7685 | 9000 | 0.3467 |
1.8668 | 9500 | 0.3591 |
1.9650 | 10000 | 0.3356 |
2.0633 | 10500 | 0.3281 |
2.1615 | 11000 | 0.3149 |
2.2598 | 11500 | 0.2767 |
2.3580 | 12000 | 0.2849 |
2.4563 | 12500 | 0.244 |
2.5545 | 13000 | 0.2416 |
2.6528 | 13500 | 0.2008 |
2.7510 | 14000 | 0.1718 |
2.8493 | 14500 | 0.188 |
2.9475 | 15000 | 0.1656 |
3.0458 | 15500 | 0.1522 |
3.1440 | 16000 | 0.144 |
3.2423 | 16500 | 0.1329 |
3.3405 | 17000 | 0.1431 |
3.4388 | 17500 | 0.128 |
3.5370 | 18000 | 0.1251 |
3.6353 | 18500 | 0.0921 |
3.7335 | 19000 | 0.0882 |
3.8318 | 19500 | 0.1087 |
3.9300 | 20000 | 0.0819 |
4.0283 | 20500 | 0.0916 |
4.1265 | 21000 | 0.0837 |
4.2248 | 21500 | 0.0855 |
4.3230 | 22000 | 0.0727 |
4.4213 | 22500 | 0.0772 |
4.5196 | 23000 | 0.0676 |
4.6178 | 23500 | 0.0597 |
4.7161 | 24000 | 0.0555 |
4.8143 | 24500 | 0.0613 |
4.9126 | 25000 | 0.0589 |
5.0108 | 25500 | 0.0503 |
5.1091 | 26000 | 0.0546 |
5.2073 | 26500 | 0.0446 |
5.3056 | 27000 | 0.0591 |
5.4038 | 27500 | 0.0431 |
5.5021 | 28000 | 0.0402 |
5.6003 | 28500 | 0.0354 |
5.6986 | 29000 | 0.0405 |
5.7968 | 29500 | 0.0308 |
5.8951 | 30000 | 0.0363 |
5.9933 | 30500 | 0.0365 |
6.0916 | 31000 | 0.0333 |
6.1898 | 31500 | 0.0238 |
6.2881 | 32000 | 0.0372 |
6.3863 | 32500 | 0.0331 |
6.4846 | 33000 | 0.0253 |
6.5828 | 33500 | 0.0315 |
6.6811 | 34000 | 0.0193 |
6.7793 | 34500 | 0.0239 |
6.8776 | 35000 | 0.0201 |
6.9758 | 35500 | 0.0213 |
7.0741 | 36000 | 0.0187 |
7.1723 | 36500 | 0.0125 |
7.2706 | 37000 | 0.0151 |
7.3688 | 37500 | 0.0208 |
7.4671 | 38000 | 0.0101 |
7.5653 | 38500 | 0.0191 |
7.6636 | 39000 | 0.0125 |
7.7618 | 39500 | 0.0136 |
7.8601 | 40000 | 0.0135 |
7.9583 | 40500 | 0.0118 |
8.0566 | 41000 | 0.012 |
8.1548 | 41500 | 0.0079 |
8.2531 | 42000 | 0.0105 |
8.3513 | 42500 | 0.0094 |
8.4496 | 43000 | 0.0079 |
8.5478 | 43500 | 0.0118 |
8.6461 | 44000 | 0.0105 |
8.7444 | 44500 | 0.0058 |
8.8426 | 45000 | 0.013 |
8.9409 | 45500 | 0.0065 |
9.0391 | 46000 | 0.0089 |
9.1374 | 46500 | 0.0031 |
9.2356 | 47000 | 0.008 |
9.3339 | 47500 | 0.0065 |
9.4321 | 48000 | 0.0052 |
9.5304 | 48500 | 0.0066 |
9.6286 | 49000 | 0.0039 |
9.7269 | 49500 | 0.004 |
9.8251 | 50000 | 0.0051 |
9.9234 | 50500 | 0.003 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.0.1+cu117
- Accelerate: 0.32.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}