|
--- |
|
license: mit |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: <schema>CREATE TABLE radio(age VARCHAR, radio_id VARCHAR, frequency VARCHAR, |
|
wavelength VARCHAR); CREATE TABLE radio_faults(radio_id VARCHAR, fault_description |
|
VARCHAR)</schema><question>Get the radio id and defect descriptions of radios |
|
that have wavelength greater than 30 ?</question><sql> |
|
example_title: example1 |
|
- text: '<schema>CREATE TABLE system(JobID: String,GID: String, UID: String, Start:Time(yyyy/mm/dd), |
|
End: Time,ElapsedRaw: Time, CPUTimeRAW: Time,NCPUS: Number,NNodes: Number, NodeList: |
|
List, State:String, Timelimit: Time);</schema><question>Get UID and job id for |
|
Jobs that started on Jan 20 , 2023</question><sql>' |
|
example_title: example2 |
|
- text: <schema>CREATE TABLE department (Department_ID number, Name text, Creation |
|
text, Ranking number, Budget_in_Billions number, Num_Employees number) which has |
|
Department_ID as primary key abd CREATE TABLE head (head_ID number, name text, |
|
born_state text, age number) which has head_ID as primary key and CREATE TABLE |
|
management (department_ID number, head_ID number, temporary_acting text) which |
|
has department_ID as primary key</schema><question> |
|
example_title: example3 |
|
tags: |
|
- code |
|
- sql |
|
- text2sql |
|
- instruction_tuned |
|
- jax |
|
- pytorch |
|
- 1b |
|
- expert |
|
- llama-cpp |
|
- gguf-my-repo |
|
datasets: |
|
- PipableAI/spider-bird |
|
base_model: PipableAI/pip-SQL-1B |
|
--- |
|
|
|
# marroyo777/pip-SQL-1B-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`PipableAI/pip-SQL-1B`](https://huggingface.co/PipableAI/pip-SQL-1B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/PipableAI/pip-SQL-1B) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo marroyo777/pip-SQL-1B-Q4_K_M-GGUF --hf-file pip-sql-1b-q4_k_m-imat.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo marroyo777/pip-SQL-1B-Q4_K_M-GGUF --hf-file pip-sql-1b-q4_k_m-imat.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo marroyo777/pip-SQL-1B-Q4_K_M-GGUF --hf-file pip-sql-1b-q4_k_m-imat.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo marroyo777/pip-SQL-1B-Q4_K_M-GGUF --hf-file pip-sql-1b-q4_k_m-imat.gguf -c 2048 |
|
``` |
|
|