matthieulel's picture
Model save
3ed9b70 verified
|
raw
history blame
4.41 kB
metadata
license: apache-2.0
base_model: google/vit-large-patch32-224-in21k
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-large-patch32-224-in21k-finetuned-galaxy10-decals
    results: []

vit-large-patch32-224-in21k-finetuned-galaxy10-decals

This model is a fine-tuned version of google/vit-large-patch32-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7429
  • Accuracy: 0.8202
  • Precision: 0.8190
  • Recall: 0.8202
  • F1: 0.8173

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1583 0.99 124 1.0551 0.7069 0.6559 0.7069 0.6758
0.8599 2.0 249 0.7914 0.7621 0.7717 0.7621 0.7557
0.854 3.0 374 0.7115 0.7672 0.7850 0.7672 0.7642
0.7282 4.0 499 0.6807 0.7683 0.7746 0.7683 0.7604
0.6165 4.99 623 0.6208 0.8016 0.8088 0.8016 0.8015
0.5946 6.0 748 0.5850 0.8044 0.8084 0.8044 0.8009
0.6243 7.0 873 0.6090 0.7931 0.8037 0.7931 0.7935
0.5429 8.0 998 0.5830 0.8021 0.8087 0.8021 0.8006
0.558 8.99 1122 0.5725 0.8095 0.8191 0.8095 0.8081
0.457 10.0 1247 0.5702 0.8123 0.8144 0.8123 0.8085
0.4399 11.0 1372 0.5973 0.8021 0.8013 0.8021 0.7995
0.4055 12.0 1497 0.5799 0.8157 0.8186 0.8157 0.8122
0.417 12.99 1621 0.6006 0.8061 0.8175 0.8061 0.8066
0.3843 14.0 1746 0.5849 0.8236 0.8257 0.8236 0.8212
0.371 15.0 1871 0.5711 0.8196 0.8157 0.8196 0.8161
0.3546 16.0 1996 0.6050 0.8140 0.8171 0.8140 0.8147
0.2935 16.99 2120 0.6425 0.8106 0.8159 0.8106 0.8091
0.2505 18.0 2245 0.6569 0.8112 0.8091 0.8112 0.8086
0.3094 19.0 2370 0.6558 0.8162 0.8137 0.8162 0.8137
0.2739 20.0 2495 0.7201 0.8067 0.8094 0.8067 0.8025
0.2224 20.99 2619 0.7227 0.8140 0.8175 0.8140 0.8114
0.2359 22.0 2744 0.6941 0.8157 0.8142 0.8157 0.8136
0.2535 23.0 2869 0.7086 0.8157 0.8160 0.8157 0.8123
0.2047 24.0 2994 0.7185 0.8236 0.8236 0.8236 0.8207
0.2162 24.99 3118 0.7135 0.8219 0.8200 0.8219 0.8194
0.2297 26.0 3243 0.7269 0.8213 0.8172 0.8213 0.8179
0.2048 27.0 3368 0.7392 0.8145 0.8156 0.8145 0.8143
0.2156 28.0 3493 0.7453 0.8207 0.8182 0.8207 0.8174
0.1785 28.99 3617 0.7497 0.8168 0.8157 0.8168 0.8145
0.1785 29.82 3720 0.7429 0.8202 0.8190 0.8202 0.8173

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1