metadata
datasets:
- glue
model-index:
- name: contriever-mnli
results: []
pipeline_tag: zero-shot-classification
language:
- en
license: mit
contriever-mnli
This model is a fine-tuned version of facebook/contriever on the glue dataset.
Model description
Unsupervised Dense Information Retrieval with Contrastive Learning. Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, Edouard Grave, arXiv 2021
How to use the model
The model can be loaded with the zero-shot-classification
pipeline like so:
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="mjwong/contriever-mnli")
You can then use this pipeline to classify sequences into any of the class names you specify.
sequence_to_classify = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(sequence_to_classify, candidate_labels)
#{'sequence': 'one day I will see the world',
# 'labels': ['travel', 'cooking', 'dancing'],
# 'scores': [0.7728410363197327, 0.13207288086414337, 0.09508601576089859]}
If more than one candidate label can be correct, pass multi_class=True
to calculate each class independently:
candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
classifier(sequence_to_classify, candidate_labels, multi_class=True)
#{'sequence': 'one day I will see the world',
# 'labels': ['exploration', 'travel', 'cooking', 'dancing'],
# 'scores': [0.9920766353607178,
# 0.7247188091278076,
# 0.08411424607038498,
3 0.03875880688428879]}
Eval results
The model was evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.
Datasets | mnli_dev_m | mnli_dev_mm | anli_test_r1 | anli_test_r2 | anli_test_r3 |
---|---|---|---|---|---|
contriever-mnli | 0.821 | 0.822 | 0.247 | 0.281 | 0.312 |
contriever-msmarco-mnli | 0.820 | 0.819 | 0.244 | 0.296 | 0.306 |
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Framework versions
- Transformers 4.28.1
- Pytorch 1.12.1+cu116
- Datasets 2.11.0
- Tokenizers 0.12.1