|
--- |
|
license: other |
|
license_name: tongyi-qianwen |
|
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
tags: |
|
- mergekit |
|
- merge |
|
- lazymergekit |
|
base_model: |
|
- Qwen/Qwen2.5-72B-Instruct |
|
--- |
|
# BigQwen2.5-125B-Instruct |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/98GiKtmH1AtHHbIbOUH4Y.jpeg) |
|
|
|
BigQwen2.5-125B-Instruct is a [Qwen/Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main). |
|
|
|
It applies the [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct/) recipe. |
|
|
|
I made it due to popular demand but I haven't tested it so use it at your own risk. Β―\\\_(γ)_/Β― |
|
|
|
## π Applications |
|
|
|
It might be good for creative writing tasks. I recommend a context length of 32k but you can go up to 131,072 tokens in theory. |
|
|
|
## π Evaluation |
|
|
|
I think it's too big for the Open LLM Leaderboard, unfortunately. Here's some feedback from users (thanks a lot!): |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/OhnwtXgIMIcr2pQqggXhU.png) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/8v_Eb6ZvpVYMhu8kMwklq.png) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/Px4f-BTJ8nDihzPJ0F47K.png) |
|
|
|
## 𧩠Configuration |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- layer_range: [0, 20] |
|
model: Qwen/Qwen2.5-72B-Instruct |
|
- sources: |
|
- layer_range: [10, 30] |
|
model: Qwen/Qwen2.5-72B-Instruct |
|
- sources: |
|
- layer_range: [20, 40] |
|
model: Qwen/Qwen2.5-72B-Instruct |
|
- sources: |
|
- layer_range: [30, 50] |
|
model: Qwen/Qwen2.5-72B-Instruct |
|
- sources: |
|
- layer_range: [40, 60] |
|
model: Qwen/Qwen2.5-72B-Instruct |
|
- sources: |
|
- layer_range: [50, 70] |
|
model: Qwen/Qwen2.5-72B-Instruct |
|
- sources: |
|
- layer_range: [60, 80] |
|
model: Qwen/Qwen2.5-72B-Instruct |
|
merge_method: passthrough |
|
dtype: bfloat16 |
|
|
|
``` |
|
|
|
## π» Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "mlabonne/BigQwen2.5-125B-Instruct" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |