metadata
base_model: Salesforce/xLAM-7b-fc-r
datasets:
- Salesforce/xlam-function-calling-60k
language:
- en
license: cc-by-nc-4.0
pipeline_tag: text-generation
tags:
- function-calling
- LLM Agent
- tool-use
- deepseek
- pytorch
- mlx
extra_gated_heading: Acknowledge to follow corresponding license to access the repository
extra_gated_button_content: Agree and access repository
extra_gated_fields:
First Name: text
Last Name: text
Country: country
Affiliation: text
andstor/xLAM-7b-fc-r-mlx
The Model andstor/xLAM-7b-fc-r-mlx was converted to MLX format from Salesforce/xLAM-7b-fc-r using mlx-lm version 0.19.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("andstor/xLAM-7b-fc-r-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)